REFERENCES
1. Geinoz, S.; Guy, R. H.; Testa, B.; Carrupt, P. A. Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: a critical evaluation. Pharm. Res. 2004, 21, 83-92.
2. Moss, G. P.; Cronin, M. T. Quantitative structure-permeability relationships for percutaneous absorption: re-analysis of steroid data. Int. J. Pharm. 2002, 238, 105-9.
4. Flynn, G. L. Physicochemical determinants of skin absorption. In Principles of Route-to-Route Extrapolation for Risk Assessment; Gerrity, T. R., Henry, C. J., Eds.; Elsevier, 1990; pp 93-127. https://hero.epa.gov/reference/10627124/ (accessed 2025-11-11).
5. Wilschut, A.; ten, Berge. W. F.; Robinson, P. J.; McKone, T. E. Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere 1995, 30, 1275-96.
6. Cronin, M. T.; Dearden, J. C.; Moss, G. P.; Murray-Dickson, G. Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Eur. J. Pharm. Sci. 1999, 7, 325-30.
7. Abdallah, R. M.; Hasan, H. E.; Hammad, A. Predictive modeling of skin permeability for molecules: investigating FDA-approved drug permeability with various AI algorithms. PLOS. Digit. Health. 2024, 3, e0000483.
8. Kunita, R.; Nishijima, T.; Todo, H.; Miyazawa, M. Integrating mathematical approaches (IMAS): novel methodology for predicting dermal absorption rates of chemicals under finite dose conditions. J. Toxicol. Sci. 2024, 49, 219-30.
9. Lee, P. H.; Conradi, R.; Shanmugasundaram, V. Development of an in silico model for human skin permeation based on a Franz cell skin permeability assay. Bioorg. Med. Chem. Lett. 2010, 20, 69-73.
10. Mitragotri, S.; Anissimov, Y. G.; Bunge, A. L.; et al. Mathematical models of skin permeability: an overview. Int. J. Pharm. 2011, 418, 115-29.
11. Cheruvu, H. S.; Liu, X.; Grice, J. E.; Roberts, M. S. An updated database of human maximum skin fluxes and epidermal permeability coefficients for drugs, xenobiotics, and other solutes applied as aqueous solutions. Data. Brief. 2022, 42, 108242.
12. Magnusson, B. M.; Anissimov, Y. G.; Cross, S. E.; Roberts, M. S. Molecular size as the main determinant of solute maximum flux across the skin. J. Invest. Dermatol. 2004, 122, 993-9.
13. Guy, R. H.; Potts, R. O. Structure-permeability relationships in percutaneous penetration. J. Pharm. Sci. 1992, 81, 603-4.
14. Roberts, M. S.; Cheruvu, H. S.; Mangion, S. E.; et al. Topical drug delivery: history, percutaneous absorption, and product development. Adv. Drug. Deliv. Rev. 2021, 177, 113929.
15. Juntunen, J.; Majumdar, S.; Sloan, K. B. The effect of water solubility of solutes on their flux through human skin in vitro: a prodrug database integrated into the extended Flynn database. Int. J. Pharm. 2008, 351, 92-103.
16. Thomas, J.; Majumdar, S.; Wasdo, S.; Majumdar, A.; Sloan, K. B. The effect of water solubility of solutes on their flux through human skin in vitro: an extended Flynn database fitted to the Roberts-Sloan equation. Int. J. Pharm. 2007, 339, 157-67.
17. Majumdar, S.; Thomas, J.; Wasdo, S.; Sloan, K. B. The effect of water solubility of solutes on their flux through human skin in vitro. Int. J. Pharm. 2007, 329, 25-36.
18. Fujiwara, S.; Yamashita, F.; Hashida, M. QSAR analysis of interstudy variable skin permeability based on the “latent membrane permeability” concept. J. Pharm. Sci. 2003, 92, 1939-46.
19. Moody, R. P.; MacPherson, H. Determination of dermal absorption QSAR/QSPRs by brute force regression: multiparameter model development with Molsuite 2000. J. Toxicol. Environ. Health. A. 2003, 66, 1927-42.
20. ten Berge W. A simple dermal absorption model: derivation and application. Chemosphere 2009, 75, 1440-5.
21. Cleek, R. L.; Bunge, A. L. A new method for estimating dermal absorption from chemical exposure. 1. General approach. Pharm. Res. 1993, 10, 497-506.
22. Mitragotri, S. A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on Scaled Particle Theory. J. Pharm. Sci. 2002, 91, 744-52.
24. USEPAA. Risk Assessment Guidance for Superfund (RAGS): Part E. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed 2025-11-11).
25. Vecchia, B. E.; Bunge, A. L. Skin absorption databases and predictive equations. In Transdermal Drug Delivery; Guy, R. H., Hadgraft, J., Eds.; CRC Press, 2002; pp 57-141.
26. Schenk, L.; Rauma, M.; Fransson, M. N.; Johanson, G. Percutaneous absorption of thirty-eight organic solvents in vitro using pig skin. PLoS. One. 2018, 13, e0205458.
27. Walker, J. D.; Rodford, R.; Patlewicz, G. Quantitative structure-activity relationships for predicting percutaneous absorption rates. Environ. Toxicol. Chem. 2003, 22, 1870-84.
28. Değím, T.; Hadgraft, J.; Ilbasmiş, S.; Ozkan, Y. Prediction of skin penetration using artificial neural network (ANN) modeling. J. Pharm. Sci. 2003, 92, 656-64.
29. Chen, L.; Han, L.; Lian, G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv. Drug. Deliv. Rev. 2013, 65, 295-305.
30. Moss, G. P.; Sun, Y.; Wilkinson, S. C.; et al. The application and limitations of mathematical modelling in the prediction of permeability across mammalian skin and polydimethylsiloxane membranes. J. Pharm. Pharmacol. 2011, 63, 1411-27.
31. Zhang, Q.; Grice, J. E.; Li, P.; Jepps, O. G.; Wang, G. J.; Roberts, M. S. Skin solubility determines maximum transepidermal flux for similar size molecules. Pharm. Res. 2009, 26, 1974-85.
32. Magee, P. S. Some novel approaches to modelling transdermal penetration and reactivity with epidermal proteins. https://books.google.com/books?hl=zh-CN&lr=&id=gEgtL8EFQ9UC&oi=fnd&pg=PA137&dq=Some+novel+approaches+to+modelling+transdermal+penetration+and+reactivity+with+epidermal+proteins&ots=ehdrQSOi-Y&sig=rvGgQIPNk-E-cL_MH0RrcO_U2ag#v=onepage&q=Some%20novel%20approaches%20to%20modelling%20transdermal%20penetration%20and%20reactivity%20with%20epidermal%20proteins&f=false (accessed 2025-11-11).




