REFERENCES

1. Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569-614.

2. Sun, Y.; Li, Y.; Gong, Y.; et al. Constructing three-dimensional architectures to design advanced anodes materials for sodium-ion batteries: from nanoscale to microscale. Energy. Mater. 2024, 4, 400002.

3. Liu, Z.; Song, Y.; Fu, S.; et al. Multiphase manganese-based layered oxide for sodium-ion batteries: structural change and phase transition. Microstructures 2024, 4, 2024036.

4. Huang, Y.; Zeng, W.; Li, K.; Zhu, X. Na-deficient P2-type layered oxide cathodes for practical sodium-ion batteries. Microstructures 2024, 4, 2024027.

5. Zhang, R.; Chen, H.; Yue, H. Room-temperature synthesis of layered open framework cathode for sodium-ion batteries. Chin. Chem. Lett. 2023, 34, 107580.

6. Yin, H.; Han, D.; Wang, W.; et al. Bimetallic sulfide anodes based on heterojunction structures for high-performance sodium-ion battery anodes. Chin. Chem. Lett. 2024, 110537.

7. Li, X.; Liu, X.; Xiang, Y.; Zheng, Q.; Wei, X.; Lin, D. Metal-organic frameworks derived carbon-coated ZnSe/Co0.85Se@N-doped carbon microcuboid as an advanced anode material for sodium-ion batteries. Chin. Chem. Lett. 2022, 33, 3197-202.

8. Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries. Nano. Mater. Sci. 2023, 5, 189-201.

9. Rehman, A.; Saleem, S.; Ali, S.; Abbas, S. M.; Choi, M.; Choi, W. Recent advances in alloying anode materials for sodium-ion batteries: material design and prospects. Energy. Mater. 2024, 4, 400068.

10. Wang, Y.; Kuang, Y.; Cui, J.; et al. Self-template construction of hierarchical Bi@C microspheres as competitive wide temperature-operating anodes for superior sodium-ion batteries. Nano. Lett. 2024, 24, 15242-51.

11. Zhao, J.; Zhang, S.; Liu, W.; Du, Z.; Fang, H. Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim. Acta. 2014, 121, 428-33.

12. Zhao, Y.; Wang, F.; Wang, C.; et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano. Energy. 2019, 56, 426-33.

13. Wei, C.; Wang, R.; Wu, Z.; et al. Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chin. Chem. Lett. 2024, 35, 108717.

14. Qiu, D.; Gao, A.; Zhao, W.; et al. Fast-charging degradation mechanism of two-dimensional FeSe anode in sodium-ion batteries. ACS. Energy. Lett. 2023, 8, 4052-60.

15. Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; et al. An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics. Nanoscale 2019, 11, 1304-12.

16. Wu, F.; Srot, V.; Chen, S.; et al. 3D honeycomb architecture enables a high-rate and long-life iron (III) fluoride-lithium battery. Adv. Mater. 2019, 31, e1905146.

17. Philippe, B.; Valvo, M.; Lindgren, F.; Rensmo, H.; Edström, K. Investigation of the electrode/electrolyte interface of Fe2O3 composite electrodes: Li vs Na batteries. Chem. Mater. 2014, 26, 5028-41.

18. Li, C.; Hu, Q.; Li, Y.; et al. Hierarchical hollow Fe2O3@MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage. Sci. Rep. 2016, 6, 25556.

19. Li, L.; Li, H.; Liu, L.; Yan, X.; Long, Y.; Han, W. Amorphous Fe2O3 anchored on N-doped graphene with internal micro-channels as an active and durable anode for sodium-ion batteries. Nanomaterials 2024, 14, 937.

20. Chen, M.; Niu, D.; Mao, J.; et al. A movable Fe2O3 core in connected hierarchical pores for ultrafast intercalation/deintercalation in sodium-ion batteries. ACS. Appl. Energy. Mater. 2021, 4, 5888-96.

21. Li, D.; Zhou, J.; Chen, X.; et al. Amorphous Fe2O3/graphene composite nanosheets with enhanced electrochemical performance for sodium-ion battery. ACS. Appl. Mater. Interfaces. 2016, 8, 30899-907.

22. Li, T.; Qin, A.; Yang, L.; et al. In situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 19900-7.

23. Bhar, M.; Ghosh, S.; Martha, S. K. Designing freestanding electrodes with Fe2O3-based conversion type anode material for sodium-ion batteries. J. Alloys. Compd. 2023, 948, 169670.

24. Zhao, D.; Xie, D.; Liu, H.; Hu, F.; Wu, X. Flexible α-Fe2O3 nanorod electrode materials for sodium-ion batteries with excellent cycle performance. Funct. Mater. Lett. 2018, 11, 1840002.

25. Shi, L.; Li, Y.; Zeng, F.; et al. In situ growth of amorphous Fe2O3 on 3D interconnected nitrogen-doped carbon nanofibers as high-performance anode materials for sodium-ion batteries. Chem. Eng. J. 2019, 356, 107-16.

26. Liu, H.; Jia, M.; Zhu, Q.; et al. 3D-0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2016, 8, 26878-85.

27. Tao, X.; Li, Y.; Wang, H. G.; et al. Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. J. Colloid. Interface. Sci. 2020, 565, 494-502.

28. Biswal, R.; Shukla, V.; Janakiraman, S.; Ghosh, S.; Adyam, V. Novel dual core@shell Fe3O4@C@polypyrrole (PPy) composite for sodium ion batteries. Mater. Today. Proc. 2020, 33, 5088-92.

29. Qi, L. Y.; Zhang, Y. W.; Zuo, Z. C.; et al. In situ quantization of ferroferric oxide embedded in 3D microcarbon for ultrahigh performance sodium-ion batteries. J. Mater. Chem. A. 2016, 4, 8822-9.

30. Qin, G.; Duan, J.; Yang, Y.; Liu, F. Magnetic field facilitated resilient chain-like Fe3O4/C/red P with superior sodium storage performance. ACS. Appl. Mater. Interfaces. 2018, 10, 6441-52.

31. Huang, Y.; Zhou, J.; Zhang, Y.; et al. Encapsulating hollow Fe3O4 in intertwined N-doped carbon nanofibers for high-performance supercapacitors and sodium-ion batteries. J. Alloys. Compd. 2022, 918, 165672.

32. Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power. Sources. 2014, 247, 391-5.

33. Li, Z.; Zhang, Y.; Li, X.; et al. Reacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometry. J. Am. Chem. Soc. 2021, 143, 12800-8.

34. Zhang, Z.; Zhong, X.; Zhang, Y.; et al. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare. Met. 2022, 41, 21-8.

35. Kandula, S.; Youn, B. S.; Cho, J.; Lim, H.; Gon Son, J. FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 2022, 439, 135678.

36. Ma, L.; Hou, B.; Zhang, H.; et al. Regulation of MIL-88B(Fe) to design FeS2 core-shelled hollow sphere as high-rate anode for a full sodium-ion battery. Chem. Eng. J. 2023, 453, 139735.

37. Lu, Z.; Zhai, Y.; Wang, N.; et al. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chem. Eng. J. 2020, 380, 122455.

38. Zhang, K.; Park, M.; Zhou, L.; et al. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 2016, 55, 12822-6.

39. Man, Z.; Li, P.; Zhou, D.; et al. Two birds with one stone: FeS2@C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano. Lett. 2020, 20, 3769-77.

40. Liu, Z.; Lu, T.; Song, T.; Yu, X.; Lou, X. W.; Paik, U. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy. Environ. Sci. 2017, 10, 1576-80.

41. Xu, X.; Liu, J.; Liu, Z.; et al. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS. Nano. 2017, 11, 9033-40.

42. Chen, C.; Yang, Y.; Tang, X.; et al. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 2019, 15, e1804740.

43. Cho, J. S.; Park, J.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano. Res. 2017, 10, 897-907.

44. Han, M.; Liu, J.; Deng, C.; et al. Yolk-shell structure and spin-polarized surface capacitance enable FeS stable and fast ion transport in sodium-ion batteries. Adv. Energy. Mater. 2024, 14, 2400246.

45. Liu, Y.; Zhong, W.; Yang, C.; et al. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. J. Mater. Chem. A. 2018, 6, 24702-8.

46. Chen, H.; Yang, X.; Lv, P.; Tian, P.; Wan, S.; Liu, Q. Mn-doped FeS with larger lattice spacing as advance anode for sodium ion half/full battery. Chem. Eng. J. 2022, 450, 137960.

47. Yuan, J.; Mu, M.; Xu, X.; et al. Three-dimensional porous FeS@N doped carbon nanosheets for high-rate and high-stable sodium/potassium storage. Compos. Part. B. Eng. 2022, 247, 110300.

48. Zhang, J.; Meng, Z.; Yang, D.; et al. Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. J. Energy. Chem. 2022, 68, 27-34.

49. Huang, X.; He, Q.; Xun, J.; et al. Constructing strain-alleviated structures in ultrathin FeS/C composites for durable lithium and sodium storage. Sci. China. Mater. 2023, 66, 2601-12.

50. Wei, X.; Tang, C.; An, Q.; et al. FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano. Res. 2017, 10, 3202-11.

51. Wang, L.; Bai, K.; Lu, Y.; Mo, W.; Zhang, L. Controllable hierarchical porous FeSe2 with excellent long cycle lifespan as anode materials for sodium-ion battery. J. Power. Sources. 2024, 592, 233913.

52. Park, G. D.; Kim, J. H.; Kang, Y. C. Large-scale production of spherical FeSe2-amorphous carbon composite powders as anode materials for sodium-ion batteries. Mater. Charact. 2016, 120, 349-56.

53. Li, D.; Zhou, J.; Chen, X.; Song, H. Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS. Appl. Mater. Interfaces. 2018, 10, 22841-50.

54. Pan, Q.; Zhang, M.; Zhang, L.; et al. FeSe2@C microrods as a superior long-life and high-rate anode for sodium ion batteries. ACS. Nano. 2020, 14, 17683-92.

55. Zhou, S.; Jiang, R.; Wang, S.; et al. FeSe2 micro-nanorods confined in N-doped carbon as an advanced anode for fast sodium ion storage. J. Mater. Chem. A. 2024, 12, 11028-37.

56. Men, S.; Lin, J.; Zhou, Y.; Kang, X. N-doped porous carbon wrapped FeSe2 nanoframework prepared by spray drying: a potential large-scale production technique for high-performance anode materials of sodium ion batteries. J. Power. Sources. 2021, 485, 229310.

57. Yousaf, M.; Wang, Z.; Wang, Y.; et al. Core-shell FeSe2/C nanostructures embedded in a carbon framework as a free standing anode for a sodium ion battery. Small 2020, 16, e2002200.

58. Tian, W.; Ma, W.; Feng, Z.; et al. Formation of hierarchical Fe7Se8 nanorod bundles with enhanced sodium storage properties. J. Energy. Chem. 2020, 44, 97-105.

59. Liu, T.; Li, Y.; Zhao, L.; et al. In situ fabrication of carbon-encapsulated Fe7X8 (X = S, Se) for enhanced sodium storage. ACS. Appl. Mater. Interfaces. 2019, 11, 19040-7.

60. Chen, S.; Huang, S.; Zhang, Y. F.; et al. Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage. Nano. Energy. 2020, 69, 104389.

61. Yuan, J.; Gan, Y.; Xu, X.; et al. Construction of Fe7Se8@Carbon nanotubes with enhanced sodium/potassium storage. J. Colloid. Interface. Sci. 2022, 626, 355-63.

62. Yang, S.; Jiang, J.; He, W.; et al. Nitrogen-doped carbon encapsulating Fe7Se8 anode with core-shell structure enables high-performance sodium-ion capacitors. J. Colloid. Interface. Sci. 2023, 630, 144-54.

63. Sun, Z.; Wu, X.; Gu, Z.; et al. Rationally designed nitrogen-doped yolk-shell Fe7Se8/Carbon nanoboxes with enhanced sodium storage in half/full cells. Carbon 2020, 166, 175-82.

64. Wang, L.; Zhao, Y.; Chang, Y.; Zhu, S.; Qi, X. Carbon nanotube interweaved Fe7Se8 nanosheet/nanorod hybrids on expanded graphite for high-performance sodium storage. J. Energy. Storage. 2024, 95, 112593.

65. Zhang, D. M.; Jia, J. H.; Yang, C. C.; Jiang, Q. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy. Storage. Mater. 2020, 24, 439-49.

66. Yang, Q.; Li, W.; Chou, S.; Wang, J.; Liu, H. Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC. Adv. 2015, 5, 80536-41.

67. Xu, X.; Feng, J.; Liu, J.; et al. Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim. Acta. 2019, 312, 224-33.

68. Li, Z.; Zhao, H.; Du, Z.; Zhao, L.; Wang, J.; Zhang, Z. Iron phosphide@N-doped carbon nanosheets with open-framework structure as an ultralong lifespan and outstanding rate performance electrode material for sodium-ion batteries. J. Power. Sources. 2020, 465, 228253.

69. Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS. Nano. 2017, 11, 11602-16.

70. Jiang, J.; Ma, C.; Zhang, W.; He, Y.; Li, X.; Yuan, X. Controlled design for integration of FeP into 3D carbon frameworks for superior Na storage. Chem. Eng. J. 2022, 429, 132271.

71. Shi, S.; Li, Z.; Shen, L.; et al. Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability. Energy. Storage. Mater. 2020, 29, 78-83.

72. Park, S.; Kim, C. W.; Lee, K. S.; Hwang, S. J.; Piao, Y. A densely packed air-stable free-standing film with FeP nanoparticles@C@P-doped reduced graphene oxide for sodium-ion batteries. Nanoscale 2023, 15, 14155-64.

73. Wang, Y.; Zhou, P.; Zhang, M.; et al. High-performance honeycombed FeF3@C cathodes enabling practical lithium pouch cells and silicon-metal fluoride batteries. Energy. Storage. Mater. 2023, 60, 102847.

74. Zhang, L.; Ji, S.; Yu, L.; Xu, X.; Liu, J. Amorphous FeF3/C nanocomposite cathode derived from metal-organic frameworks for sodium ion batteries. RSC. Adv. 2017, 7, 24004-10.

75. Sun, Z.; Fu, W.; Liu, M. Z.; et al. A nanoconfined iron (iii) fluoride cathode in a NaDFOB electrolyte: towards high-performance sodium-ion batteries. J. Mater. Chem. A. 2020, 8, 4091-8.

76. Sun, Z.; Wang, B.; Boebinger, M. G.; et al. Stability of FeF3-based sodium-ion batteries in nonflammable ionic liquid electrolytes at room and elevated temperatures. ACS. Appl. Mater. Interfaces. 2022, 29, 33447-56.

77. Ma, D.; Wang, H.; Li, Y.; et al. In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano. Energy. 2014, 10, 295-304.

78. Maulana, A. Y.; Song, J.; Futalan, C. M.; Kim, J. Improved reversibility of phase transformations using electron-rich graphitic carbon matrix in FeF2 cathode for sodium-ion batteries. Chem. Eng. J. 2022, 434, 134727.

79. Ni, D.; Fang, L.; Sun, W.; et al. FeF2@MHCS cathodes with high capacity and fast sodium storage based on nanostructure construction. ACS. Appl. Energy. Mater. 2020, 3, 10340-8.

80. Ni, D.; Sun, W.; Lu, C.; et al. Improved rate and cycling performance of FeF2-rGO hybrid cathode with poly (acrylic acid) binder for sodium ion batteries. J. Power. Sources. 2019, 413, 449-58.

81. Liu, M.; Wang, X.; Zhang, R.; et al. Hollow porous FeF3·0.33H2O microspheres by AlPO4 coating as a cathode material of Na-ion batteries. J. Energy. Storage. 2018, 18, 103-11.

82. Brugnetti, G.; Fiore, M.; Lorenzi, R.; Paleari, A.; Ferrara, C.; Ruffo, R. FeTiO3 as anode material for sodium-ion batteries: from morphology control to decomposition. ChemElectroChem 2020, 7, 1713-22.

83. Lin, Z.; Zhang, H.; Yang, C.; et al. Constructing FeTe2 nanoparticles embedded in N-doped carbon nanofiber composites as a long-life and high-rate anode material for sodium-ion batteries. Sustain. Energy. Fuels. 2024, 8, 934-41.

84. Ding, Y.; Chen, Y.; Xu, N.; et al. Facile synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nanomicro. Lett. 2020, 12, 54.

85. Kim, J.; Kim, H.; Kang, K. Conversion-based cathode materials for rechargeable sodium batteries. Adv. Energy. Mater. 2018, 8, 1702646.

86. Xu, S.; Dong, H.; Yang, D.; et al. Promising cathode materials for sodium-ion batteries from lab to application. ACS. Cent. Sci. 2023, 9, 2012-35.

87. Zheng, Y.; Zhang, Z.; Jiang, X.; et al. A comprehensive review on iron-based sulfate cathodes for sodium-ion batteries. Nanomaterials 2024, 14, 1915.

88. Zhang, Z.; Du, Y.; Wang, Q. C.; et al. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 17504-10.

89. Park, H.; Yoo, J. K.; Ko, W.; et al. Monoclinic Fe2(SO4)3: a new Fe-based cathode material with superior electrochemical performances for Na-ion batteries. J. Power. Sources. 2019, 434, 226750.

90. Hu, H.; Zhang, X.; Gao, Z.; et al. Boosting the cycle performance of iron trifluoride based solid state batteries at elevated temperatures by engineering the cathode solid electrolyte interface. Small 2024, 20, e2307116.

91. Chu, Y.; Mu, Y.; Zou, L.; et al. Thermodynamically stable dual-modified LiF&FeF3 layer empowering Ni-rich cathodes with superior cyclabilities. Adv. Mater. 2023, 35, e2212308.

92. Hu, J.; Lei, M.; Zhu, C.; Zhang, B.; Li, C. Highly conductive doped fluoride solid electrolytes with solidified ionic liquid to enable reversible FeF3 conversion solid state batteries. Adv. Funct. Mater. 2024, 34, 2314044.

93. Wang, X.; Wang, Z.; Chen, L.; Li, H.; Wu, F. High-capacity sulfide all-solid-state lithium battery with a conversion-type iron fluoride cathode. J. Mater. Chem. A. 2023, 11, 4142-54.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/