REFERENCES

1. Tian, X.; Zhao, P.; Sheng, W. Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 2019, 31, e1808066.

2. Sun, Y.; Sun, S.; Yang, H.; Xi, S.; Gracia, J.; Xu, Z. J. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 2020, 32, e2003297.

3. Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390-4.

4. Bin, S.; Chen, Z.; Zhu, Y.; et al. High-pressure proton exchange membrane water electrolysis: current status and challenges in hydrogen production. Int. J. Hydrogen. Energy. 2024, 67, 390-405.

5. Wang, Q.; Lei, Y.; Wang, Y.; et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy. Environ. Sci. 2020, 13, 1593-616.

6. Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414-48.

7. Wang, C.; Shang, H.; Li, J.; et al. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. Chem. Eng. J. 2021, 420, 129805.

8. Chen, Z.; Jia, H.; Yuan, J.; et al. N, P-co-doped carbon coupled with CoP as superior electrocatalysts for hydrogen evolution reaction and overall water splitting. Int. J. Hydrogen. Energy. 2019, 44, 24342-52.

9. Hu, C.; Dai, L. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, e1804672.

10. Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z. Zeng, J,. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817-44.

11. Cho, K. H.; Seo, H.; Park, S.; et al. Uniform, assembled 4nm Mn3O4 nanoparticles as efficient water oxidation electrocatalysts at neutral pH. Adv. Funct. Mater. 2020, 30, 1910424.

12. SMM Metal Market. Rare Earth Oxides Prices. https://www.metal.com/Rare-Earth-Oxides. (accessed 2025-06-02).

13. Gao, W.; Gou, W.; Ma, Y.; Wei, R.; Ho, J. C.; Qu, Y. Cerium phosphate as a novel cocatalyst promoting NiCo2O4 nanowire arrays for efficient and robust electrocatalytic oxygen evolution. ACS. Appl. Energy. Mater. 2019, 2, 5769-76.

14. Lin, X.; Huang, Y. C.; Hu, Z.; et al. 5f covalency synergistically boosting oxygen evolution of UCoO4 catalyst. J. Am. Chem. Soc. 2022, 144, 416-23.

15. Li, M.; Wang, X.; Liu, K.; et al. Ce‐induced differentiated regulation of Co sites via gradient orbital coupling for bifunctional water‐splitting reactions. Adv. Energy. Mater. 2023, 13, 2301162.

16. Wang, X.; Zhu, Y.; Li, H.; Lee, J. M.; Tang, Y.; Fu, G. Rare-earth single-atom catalysts: a new frontier in photo/electrocatalysis. Small. Methods. 2022, 6, e2200413.

17. Rosalbino, F.; Delsante, S.; Borzone, G.; Angelini, E. Electrocatalytic behaviour of Co-Ni-R (R = Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen. Energy. 2008, 33, 6696-703.

18. Rodney, J. D.; Deepapriya, S.; Das, S. J.; et al. Boosting overall electrochemical water splitting via rare earth doped cupric oxide nanoparticles obtained by co-precipitation technique. J. Alloys. Compd. 2022, 921, 165948.

19. Zhang, F.; Wang, K.; Zhang, H.; et al. Dynamic reconstruction of Ce‐doped Fe2P/NiCoP hybrid for ampere-level oxygen evolution in anion exchange membrane water electrolysis. Adv. Funct. Mater. 2025, 35, 2500861.

20. Ran, B.; Wu, Y.; Zhang, K.; Yao, R.; Li, J.; Liu, G. Supporting IrOx on stable La, Nb-TiO2 with enhanced electron transport for efficient acidic water oxidation. Fuel 2025, 381, 133451.

21. Liu, Y.; Hou, Y.; Cai, M.; et al. Porous yolk@shell-Heterostuctured Co3O4@CeO2/Co3O4 nanospheres as catalysts for the oxygen evolution reaction. ACS. Appl. Nano. Mater. 2024, 7, 21221-30.

22. You, M.; Xu, Y.; He, B.; et al. Realizing robust and efficient acidic oxygen evolution by electronic modulation of 0D/2D CeO2 quantum dots decorated SrIrO3 nanosheets. Appl. Catal. B:. Environ. 2022, 315, 121579.

23. Yan, G.; Wang, Y.; Zhang, Z.; et al. Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nanomicro. Lett. 2020, 12, 49.

24. Qiu, T.; Tu, B.; Saldana-greco, D.; Rappe, A. M. Ab initio simulation explains the enhancement of catalytic oxygen evolution on CaMnO3. ACS. Catal. 2018, 8, 2218-24.

25. Li, M.; Wang, Y.; Zheng, Y.; et al. Gadolinium-induced valence structure engineering for enhanced oxygen electrocatalysis. Adv. Energy. Mater. 2020, 10, 1903833.

26. Li, C.; Wang, P.; He, M.; Yuan, X.; Fang, Z.; Li, Z. Rare earth-based nanomaterials in electrocatalysis. Coord. Chem. Rev. 2023, 489, 215204.

27. Wan, Y.; Wei, W.; Li, L.; Wu, L.; Qin, H.; Yuan, X. Modulating support effect in high-entropy sulfide via La single-atom for boosted oxygen evolution. Small 2025, 21, e2502039.

28. Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 2017, 29.

29. Mahmood, N.; Yao, Y.; Zhang, J. W.; Pan, L.; Zhang, X.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. (Weinh). 2018, 5, 1700464.

30. Dehkordi, H. B.; Zhiani, M. A novel Ir-Ru-based nanoparticle supported on ordered electrochemically synthesized TiO2-nanotube as a highly active and stable oxygen evolution reaction catalyst for water splitting in acidic media. Int. J. Hydrogen. Energy. 2023, 48, 33042-61.

31. Huang, C.; Zhou, J.; Duan, D.; et al. Roles of heteroatoms in electrocatalysts for alkaline water splitting: a review focusing on the reaction mechanism. Chin. J. Catal. 2022, 43, 2091-110.

32. Jiang, Y.; Fu, H.; Liang, Z.; Zhang, Q.; Du, Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem. Soc. Rev. 2024, 53, 714-63.

33. Piguet, C. Extricating erbium. Nature. Chem. 2014, 6, 370.

34. Mclemore, V. Rare earth elements (REE) deposits associated with great plain margin deposits (alkaline-related), Southwestern United States and Eastern Mexico. Resources 2018, 7, 8.

35. Tao, Y.; Shen, L.; Feng, C.; et al. Distribution of rare earth elements (REEs) and their roles in plant growth: a review. Environ. Pollut. 2022, 298, 118540.

36. Fu, H.; Jiang, Y.; Zhang, M.; et al. High-entropy rare earth materials: synthesis, application and outlook. Chem. Soc. Rev. 2024, 53, 2211-47.

37. Ganduglia-pirovano, M. V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 2007, 62, 219-70.

38. Strasser, P.; Koh, S.; Anniyev, T.; et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature. Chem. 2010, 2, 454-60.

39. Cao, Y.; Zheng, X.; Deng, Y.; Hu, W. Comprehensive insight into electronic modulation of rare-earth elements for enhancing electrocatalytic performance of atomically dispersed materials. Adv. Funct. Mater. 2025, 35, 2423158.

40. Wang, X.; Li, M.; Tang, Y.; Li, H.; Fu, G. Rare earths evoked gradient orbital coupling in electrocatalysis: recent advances and future perspectives. Prog. Mater. Sci. 2026, 155, 101539.

41. Liu, T.; Chen, Y.; Wang, X.; et al. Rare-earth oxychlorides as promoters of ruthenium toward high-performance hydrogen evolution electrocatalysts for alkaline electrolyzers. Adv. Mater. 2025, 37, e2417621.

42. Kaup, G.; Meiners, D.; Kynast, U. H. Rare earth Ibuprofen complexes: Highlighting a pharmaceutical. Opt. Mater. 2017, 63, 26-31.

43. Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285-303.

44. Zhou, B.; Li, Z.; Chen, C. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 2017, 7, 203.

45. Royal Society of Chemistry Periodic Table. https://www.rsc.org/periodic-table. (accessed 2025-06-02).

46. Fan, C.; Dong, W.; Saira, Y.; Tang, Y.; Fu, G.; Lee, J. M. Rare-earth-modified metal-organic frameworks and derivatives for photo/electrocatalysis. Small 2023, 19, e2302738.

47. Yin, L.; Zhang, S.; Huang, Y.; Yan, C.; Du, Y. Cerium contained advanced materials: shining star under electrocatalysis. Coord. Chem. Rev. 2024, 518, 216111.

48. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-36.

49. Zhang, J.; Chen, J.; Luo, Y.; et al. Engineering heterointerfaces coupled with oxygen vacancies in lanthanum-based hollow microspheres for synergistically enhanced oxygen electrocatalysis. J. Energy. Chem. 2021, 60, 503-11.

50. Fu, G.; Li, W.; Zhang, J. Y.; et al. Facilitating the deprotonation of OH to O through Fe4+ -induced states in perovskite LaNiO3 enables a fast oxygen evolution reaction. Small 2021, 17, e2006930.

51. Gao, W.; Ma, F.; Wang, C.; Wen, D. Ce dopant significantly promotes the catalytic activity of Ni foam-supported Ni3S2 electrocatalyst for alkaline oxygen evolution reaction. J. Power. Sources. 2020, 450, 227654.

52. Shen, Z.; Wei, X.; Wang, M.; et al. Multi-defect Pd-based catalyst doped with rare earth element La for ethanol-assisted energy-saving hydrogen production. J. Colloid. Interface. Sci. 2025, 697, 137969.

53. Munawar, T.; Bashir, A.; Nisa, M. U.; et al. Unravelling the operando structural and chemical stability of rare earth metals co-doped CeO2-based electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen. Energy. 2025, 137, 1097-106.

54. Zhu, M.; Gao, J.; Zhang, C. La-doping-induced lattice strain and electronic state modulation in RuO2 for electrocatalytic oxygen evolution in acidic solutions. Inorg. Chem. 2025, 64, 4571-9.

55. Yang, J.; Shen, Y.; Xian, J.; Xiang, R.; Li, G. Rare-earth element doped NiFe-MOFs as efficient and robust bifunctional electrocatalysts for both alkaline freshwater and seawater splitting. Chem. Sci. 2025, 16, 685-92.

56. Yang, J.; An, L.; Wang, S.; et al. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting. Chin. J. Catal. 2023, 55, 116-36.

57. Yan, D.; Xia, C.; Zhang, W.; et al. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy. Mater. 2022, 12, 2202317.

58. Yan, X.; Jia, Y.; Yao, X. Defective structures in metal compounds for energy-related electrocatalysis. Small. Struct. 2020, 2, 2000067.

59. Wang, Z.; Xu, W.; Chen, X.; et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.

60. Huang, Q.; Xia, G. J.; Huang, B.; et al. Activating lattice oxygen by a defect-engineered Fe2O3-CeO2 nano-heterojunction for efficient electrochemical water oxidation. Energy. Environ. Sci. 2024, 17, 5260-72.

61. Wang, Z.; Li, T.; Wang, Q. Plasma-engineered CeOx nanosheet array with nitrogen-doping and porous architecture for efficient electrocatalysis. Nanomaterials. 2024, 14, 185.

62. Zou, Y.; Rukundo, E.; Chen, X.; Rao, X.; Liu, Y. Enhanced formic acid electrosynthesis from carbon dioxide by mediating the Bi2O3/La2O3 interface and La-induced oxygen vacancies in BiLa MOF-derived nanocatalysts. Sep. Purif. Technol. 2025, 353, 128624.

63. Jiang, Y.; Liang, Z.; Fu, H.; Hai, G.; Du, Y. Utilizing oxygen vacancies in cerium oxide to narrow the gap between d and f band centers for efficient alkaline water oxidation. Nano. Today. 2025, 62, 102705.

64. Zhang, Y.; Nie, K.; Li, B.; et al. Cerium-optimized platinum-free high-entropy alloy nanoclusters for enhanced ampere-level sustainable hydrogen generation. Appl. Catal. B:. Environ. Energy. 2025, 360, 124529.

65. Li, Y.; Yuan, X.; Wang, P.; et al. Rare earth alloy nanomaterials in electrocatalysis. J. Energy. Chem. 2023, 83, 574-94.

66. Zhang, Y. Review of the structural, magnetic and magnetocaloric properties in ternary rare earth RE2T2X type intermetallic compounds. J. Alloys. Compd. 2019, 787, 1173-86.

67. Zhang, S.; Yin, L.; Du, Y. Regulating Rh-based rare earth nanoalloy electrocatalysts by scandium, yttrium for accelerated hydrogen evolution kinetics. J. Rare. Earths. 2025, 43, 1188-94.

68. Zhang, S.; Yin, L.; Wang, S.; et al. Ternary rare earth alloy Pt3-xIrxSc nanoparticles modulate negatively charged Pt via charge transfer to facilitate pH-universal hydrogen evolution. ACS. Nano. 2023, 17, 23103-14.

69. Xia, J.; Zhao, H.; Huang, B.; et al. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1908367.

70. Zhao, G.; Rui, K.; Dou, S. X.; Sun, W. Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts. J. Mater. Chem. A. 2020, 8, 6393-405.

71. Wu, W.; Luo, S.; Huang, Y.; He, H.; Shen, P. K.; Zhu, J. Recent advances in transition metal phosphide-based heterostructure electrocatalysts for the oxygen evolution reaction. Mater. Chem. Front. 2024, 8, 1064-83.

72. Song, X. Z.; Su, Q. F.; Li, S. J.; et al. Heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons derived from CeO2-inserted zeolitic imidazolate framework-67as efficient bifunctional electrocatalysts for overall water splitting. Int. J. Hydrogen. Energy. 2020, 45, 30559-70.

73. Chen, J.; Hu, Z.; Ou, Y.; et al. Interfacial engineering regulated by CeOx to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction. J. Mater. Sci. Technol. 2022, 120, 129-38.

74. Munawar, T.; Bashir, A.; Nadeem, M. S.; et al. Core-shell CeO2@C60 hybrid serves as a dual-functional catalyst: photocatalyst for organic pollutant degradation and electrocatalyst for oxygen evolution reaction. Ceram. Int. 2023, 49, 8447-62.

75. Flores-Melo, L. M.; Arce-Estrada, E.; Trujillo-Olivares, I.; Sandoval-Pineda, J. M.; Reyes-Rodríguez, J. L.; González-Huerta, R. d. G. Influence of CeO2 nanoparticles in the stability of electrodeposited Ni anodes for alkaline electrolysers. Int. J. Hydrogen. Energy. 2023, 48, 18141-53.

76. Li, F.; Jiang, M.; Lai, C.; Xu, H.; Zhang, K.; Jin, Z. Yttrium- and cerium-codoped ultrathin metal-organic framework nanosheet arrays for high-efficiency electrocatalytic overall water splitting. Nano. Lett. 2022, 22, 7238-45.

77. Ma, Y.; Mu, G.; Miao, Y.; et al. Hydrangea flower‐like nanostructure of dysprosium‐doped Fe‐MOF for highly efficient oxygen evolution reaction. Rare. Metals. 2021, 41, 844-50.

78. Wei, P.; Li, X.; He, Z.; et al. Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction. Appl. Catal. B:. Environ. 2021, 299, 120657.

79. Ye, X.; Ma, H.; Wu, S.; et al. Electron structure customization of molybdenum phosphide via lanthanum doping toward highly efficient overall water splitting. J. Mater. Sci. Technol. 2025, 218, 227-35.

80. Wu, Y.; Liu, Y.; Liu, K.; et al. Hierarchical and self-supporting honeycomb LaNi5 alloy on nickel foam for overall water splitting in alkaline media. Green. Energy. Environ. 2022, 7, 799-806.

81. Li, W.; Sun, Z.; Ge, R.; et al. Nanoarchitectonics of La‐doped Ni3S2/MoS2 hetetostructural electrocatalysts for water electrolysis. Small. Struct. 2023, 4, 2300175.

82. Jin, Y.; Fan, X.; Li, Q.; et al. Self-reconstruction of high entropy alloys for efficient alkaline hydrogen evolution. Small 2025, 21, e2408165.

83. Wang, Z. L.; Huang, G. Y.; Zhu, G. R.; et al. La-exacerbated lattice distortion of high entropy alloys for enhanced electrocatalytic water splitting. Appl. Catal. B:. Environ. Energy. 2025, 361, 124585.

84. Wu, Y.; Yao, R.; Zhao, Q.; Li, J.; Liu, G. La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: synergistic effect of La doping and oxygen vacancy. Chem. Eng. J. 2022, 439, 135699.

85. Rodney, J. D.; Deepapriya, S.; Cyril Robinson, M.; et al. Lanthanum doped copper oxide nanoparticles enabled proficient bi-functional electrocatalyst for overall water splitting. Int. J. Hydrogen. Energy. 2020, 45, 24684-96.

86. Guo, X.; Li, M.; Qiu, L.; et al. Engineering electron redistribution of bimetallic phosphates with CeO2 enables high-performance overall water splitting. Chem. Eng. J. 2023, 453, 139796.

87. Ding, X.; Yu, J.; Huang, W.; Chen, D.; Lin, W.; Xie, Z. Modulation of the interfacial charge density on Fe2P-CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting. Chem. Eng. J. 2023, 451, 138550.

88. Guo, Q.; Li, Y.; Xu, Z.; Liu, R. CeO2‐accelerated surface reconstruction of CoSe2 nanoneedle forms active CeO2@CoOOH interface to boost oxygen evolution reaction for water splitting. Adv. Energy. Mater. 2024, 15, 2403744.

89. Liu, X.; Wei, S.; Cao, S.; et al. Lattice strain with stabilized oxygen vacancies boosts ceria for robust alkaline hydrogen evolution outperforming benchmark Pt. Adv. Mater. 2024, 36, e2405970.

90. Liu, K.; Liu, T.; Wu, X.; et al. Frustrated Lewis pair chemistry in 2D CeO2 for efficient alkaline hydrogen evolution. J. Mater. Chem. A. 2024, 12, 28843-52.

91. Gao, W.; Yan, M.; Cheung, H. Y.; et al. Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano. Energy. 2017, 38, 290-6.

92. Zhang, M.; Xu, H.; Yang, H.; et al. Electronic modulation of nickel cobalt phosphide nanosheets by Ce doping for efficient overall water splitting. Small 2025, 21, e2504837.

93. Li, N.; Zhang, L.; Zhang, H.; et al. Synergistic effect between Er‐doped MoS2 nanosheets and interfacial Mo-N coupling phases for enhanced electrocatalytic hydrogen evolution. Rare. Metals. 2023, 43, 1301-8.

94. Zhang, G.; Wang, B.; Bi, J.; Fang, D.; Yang, S. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A. 2019, 7, 5769-78.

95. Zhang, H.; Aierke, A.; Zhou, Y.; et al. A high‐performance transition‐metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency. Carbon. Energy. 2022, 5, e217.

96. Nadeem, M.; Yasin, G.; Bhatti, M. H.; Mehmood, M.; Arif, M.; Dai, L. Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J. Power. Sources. 2018, 402, 34-42.

97. Chen, G.; Chen, W.; Lu, R.; et al. Near-atomic-scale superfine alloy clusters for ultrastable acidic hydrogen electrocatalysis. J. Am. Chem. Soc. 2023, 145, 22069-78.

98. Fatima, S.; Sajid, I. H.; Khan, M. F.; Rizwan, S. Synthesis and characterization of erbium decorated V2CTx for water splitting properties. Int. J. Hydrogen. Energy. 2024, 55, 110-7.

99. Xu, X.; Chen, Y.; Zhou, W.; et al. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442-8.

100. Liu, W.; Tan, W.; He, H.; Peng, Y.; Chen, Y.; Yang, Y. One-step electrodeposition of Ni-Ce-Pr-Ho/NF as an efficient electrocatalyst for hydrogen evolution reaction in alkaline medium. Energy 2022, 250, 123831.

101. Xu, Y.; Zhou, Q.; Ren, T.; et al. Enhanced electron penetration triggering interfacial charge redistribution in N-doped graphene-wrapped NiGd nanoparticles for coupling methanol electroreforming to H2 production. J. Mater. Chem. A. 2023, 11, 20112-9.

102. Liu, J.; Chen, Y.; Shi, Y.; et al. Asymmetrical Nd-O-Ru bridge active sites boost hydrogen evolution at large current densities. Int. J. Hydrogen. Energy. 2025, 175, 151493.

103. Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy. Environ. Sci. 2019, 12, 2620-45.

104. Jiang, H.; Gu, J.; Zheng, X.; et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy. Environ. Sci. 2019, 12, 322-33.

105. Wang, X.; Pi, W.; Hu, S.; Bao, H.; Yao, N.; Luo, W. Boosting oxygen evolution reaction performance on NiFe-based catalysts through d-orbital hybridization. Nanomicro. Lett. 2024, 17, 11.

106. Arumugam, B.; Siddharthan, E. E.; Mannu, P.; et al. Regulating the electronic structure of CoMoO4 via La doping for efficient and durable electrochemical water splitting reactions. J. Mater. Chem. A. 2025, 13, 6749-67.

107. Song, Q.; Li, K.; Cao, Z.; et al. Doping La into NiFe LDH/NiS heterostructure achieving high-current-density oxygen evolution for anion exchange membrane water electrolysis. Chem. Eng. J. 2025, 504, 157526.

108. Nguyen, T. X.; Liao, Y.; Lin, C.; Su, Y.; Ting, J. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2101632.

109. Hao, S.; Wang, Y.; Zheng, G.; et al. Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media. Appl. Catal. B:. Environ. 2020, 266, 118643.

110. Gan, Y.; Ye, Y.; Dai, X.; et al. La and S Co-doping induced the synergism of multiphase nickel-iron nanosheets with rich oxygen vacancies to trigger large-current-density oxygen evolution and urea oxidation reactions. Small 2023, 19, e2303250.

111. Li, C. H.; Yuan, C. Z.; Huang, X.; et al. Tailoring the electron redistribution of RuO2 by constructing a Ru-O-La asymmetric configuration for efficient acidic oxygen evolution. eScience 2025, 5, 100307.

112. Qin, Q.; Jang, H.; Wang, Y.; et al. Gettering La Effect from La3IrO7 as a highly efficient electrocatalyst for oxygen evolution reaction in acid media. Adv. Energy. Mater. 2020, 11, 2003561.

113. Zhang, X. Y.; Yin, H.; Dang, C. C.; et al. Unlocking enhanced catalysis stability in acidic oxygen evolution: structural insights for PEM applications under high-current density. Angew. Chem. Int. Ed. Engl. 2025, 64, e202425569.

114. Wang, P.; Han, X.; Bai, P.; et al. Utilizing an electron redistribution strategy to inhibit the leaching of sulfur from CeO2/NiCo2S4 heterostructure for high-efficiency oxygen evolution. Appl. Catal. B:. Environ. Energy. 2024, 344, 123659.

115. Zhi, Y.; Li, Z.; Tang, Y.; et al. “Electron-reservoir” CeO2 layer on S-Co(OH)2 to stabilize lattice oxygen for boosting oxygen evolution reaction at large current density. Nano. Energy. 2025, 134, 110565.

116. Song, H.; Yong, X.; Waterhouse, G. I.; et al. RuO2-CeO2 lattice matching strategy enables robust water oxidation electrocatalysis in acidic media via two distinct oxygen evolution mechanisms. ACS. Catal. 2024, 14, 3298-307.

117. Liu, M.; Min, K.; Han, B.; Lee, L. Y. S. Interfacing or doping? Role of Ce in Highly promoted water oxidation of NiFe‐layered double hydroxide. Adv. Energy. Mater. 2021, 11, 2101281.

118. Zhou, Y. N.; Fan, R. Y.; Dou, S. Y.; et al. Tailoring electron transfer with Ce integration in ultrathin Co(OH)2 nanosheets by fast microwave for oxygen evolution reaction. J. Energy. Chem. 2021, 59, 299-305.

119. He, H.; Shang, F.; An, B.; et al. Hierarchical core-shell Ce-doped NiO@MoO2 architecture with Ni 3d-band center modulation for enhanced high-current-density oxygen evolution. Appl. Catal. B:. Environ. Energy. 2024, 358, 124455.

120. He, J.; Li, W.; Xu, P.; Sun, J. Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media. Appl. Catal. B:. Environ. 2021, 298, 120528.

121. Liao, Y.; He, R.; Pan, W.; et al. Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution. Chem. Eng. J. 2023, 464, 142669.

122. Pan, S.; Li, H.; Wang, T.; et al. Erratum: Addition to “Er-doping enhances the oxygen evolution performance of cobalt oxide in acidic medium”. ACS. Catal. 2025, 15, 7516-7.

123. Zhu, Y.; Wang, X.; Zhu, X.; et al. Improving the oxygen evolution activity of layered double-hydroxide via erbium-induced electronic engineering. Small 2023, 19, e2206531.

124. Hao, S.; Liu, M.; Pan, J.; et al. Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 2020, 11, 5368.

125. Wang, M.; Chen, K.; Yan, Z.; Chen, Y.; Liu, H.; Du, X. Tailoring the oxygen evolution reaction activity of lanthanide-doped NiFe-LDHs through lanthanide contraction. Chem. Eng. J. 2024, 496, 154059.

126. Wang, B.; Wu, X.; Jia, S.; et al. Ultrahigh specific surface area mesoporous perovskite oxide nanosheets with rare-earth-enhanced lattice oxygen participation for superior water oxidation. J.Mater. Science. Technol. 2025, 227, 255-61.

127. Wu, J.; Zou, W.; Zhang, J.; et al. Regulating Ir-O covalency to boost acidic oxygen evolution reaction. Small 2024, 20, e2308419.

128. Zhang, J.; Shi, L.; Miao, X.; Yang, L.; Zhou, S. A new-type high-entropy electrocatalyst with a pyrochlore structure for acid-water oxidation. J. Mater. Chem. A. 2024, 12, 12785-94.