REFERENCES

1. Gambhir, A.; George, M.; Mcjeon, H.; et al. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat. Clim. Chang. 2021, 12, 88-96.

2. Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS. Catal. 2018, 8, 3602-35.

3. Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconductor quantum dots: an emerging candidate for CO2 photoreduction. Adv. Mater. 2019, 31, e1900709.

4. Barry, B. A.; Brahmachari, U.; Guo, Z. Tracking reactive water and hydrogen-bonding networks in photosynthetic oxygen evolution. Acc. Chem. Res. 2017, 50, 1937-45.

5. Guo, Z.; He, J.; Barry, B. A. Calcium, conformational selection, and redox-active tyrosine YZ in the photosynthetic oxygen-evolving cluster. Proc. Natl. Acad. Sci. USA. 2018, 115, 5658-63.

6. Proppe, A. H.; Li, Y. C.; Aspuru-Guzik, A.; et al. Bioinspiration in light harvesting and catalysis. Nat. Rev. Mater. 2020, 5, 828-46.

7. Tang, J.; Guo, C.; Wang, T.; et al. A review of g‐C3N4‐based photocatalytic materials for photocatalytic CO2 reduction. Carbon. Neutralizat. 2024, 3, 557-83.

8. Murali, G.; Reddy Modigunta, J. K.; Park, Y. H.; et al. A review on MXene synthesis, stability, and photocatalytic applications. ACS. Nano. 2022, 16, 13370-429.

9. Zhang, Z.; Liu, X.; Gao, L.; Qi, J.; Xing, C. Biological hybrid systems based on photocatalysts to drive the conversion of CO2 into high-value compounds. ACS. Appl. Bio. Mater. 2025, 8, 2735-50.

10. Kang, H.; Ma, J.; Perathoner, S.; Chu, W.; Centi, G.; Liu, Y. Understanding the complexity in bridging thermal and electrocatalytic methanation of CO2. Chem. Soc. Rev. 2023, 52, 3627-62.

11. Wang, S.; Wang, J.; Wang, Y.; et al. Insight into the selectivity-determining step of various photocatalytic CO2 reduction products by inorganic semiconductors. ACS. Catal. 2024, 14, 10760-88.

12. Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-mayouf, A. M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys. Compd. 2020, 828, 154281.

13. Wang, J.; Shi, Y.; Wang, Y.; Li, Z. Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 Reduction: recent advances, challenges, and prospects. ACS. Energy. Lett. 2022, 7, 2043-59.

14. Sun, P.; Xing, Z.; Li, Z.; Zhou, W. Recent advances in quantum dots photocatalysts. Chem. Eng. J. 2023, 458, 141399.

15. Ravi, V. K.; Markad, G. B.; Nag, A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3(X = Cl, Br, I) perovskite nanocrystals. ACS. Energy. Lett. 2016, 1, 665-71.

16. Zhu, S.; Xiao, F. Transition metal chalcogenides quantum dots: emerging building blocks toward solar-to-hydrogen conversion. ACS. Catal. 2023, 13, 7269-309.

17. Park, Y. H.; Murali, G.; Modigunta, J. K. R.; In, I.; In, S. I. Recent advances in quantum dots for photocatalytic CO2 reduction: a mini-review. Front. Chem. 2021, 9, 734108.

18. Xiang, X.; Wang, L.; Zhang, J.; Cheng, B.; Yu, J.; Macyk, W. Cadmium chalcogenide (CdS, CdSe, CdTe) quantum dots for solar-to-fuel conversion. Adv. Phontonic. Res. 2022, 3, 2200065.

19. Ahmed, A. T.; Altalbawy, F. M.; Al-Hetty, H. R. A. K.; et al. Cadmium selenide quantum dots in photo- and electrocatalysis: advances in hydrogen, oxygen, and CO2 reactions. Mater. Sci. Semicond. Process. 2025, 199, 109831.

20. Yao, D.; Liu, Y.; Li, J.; Zhang, H. Advances in green colloidal synthesis of metal selenide and telluride quantum dots. Chin. Chem. Lett. 2019, 30, 277-84.

21. Gui, R.; Jin, H.; Wang, Z.; Tan, L. Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coord. Chem. Rev. 2015, 296, 91-124.

22. Torimoto, T.; Kameyama, T.; Uematsu, T.; Kuwabata, S. Controlling optical properties and electronic energy structure of I-III-VI semiconductor quantum dots for improving their photofunctions. J. Photochem. Photobiol. C. 2023, 54, 100569.

23. Chen, S.; Zu, B.; Wu, L. Optical applications of CuInSe2 colloidal quantum dots. ACS. Omega. 2024, 9, 43288-301.

24. Sheng, J.; He, Y.; Huang, M.; Yuan, C.; Wang, S.; Dong, F. Frustrated lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots. ACS. Catal. 2022, 12, 2915-26.

25. Chen, Z.; Huang, N.; Xu, Q. Metal halide perovskite materials in photocatalysis: design strategies and applications. Coord. Chem. Rev. 2023, 481, 215031.

26. Chen, S.; Yin, H.; Liu, P.; Wang, Y.; Zhao, H. Stabilization and performance enhancement strategies for halide perovskite photocatalysts. Adv. Mater. 2023, 35, e2203836.

27. Jing, L.; Xu, Y.; Xie, M.; et al. Cyano-rich g-C3N4 in photochemistry: design, applications, and prospects. Small 2024, 20, e2304404.

28. Lu, S.; Zhang, S.; Liu, Q.; et al. Recent advances in novel materials for photocatalytic carbon dioxide reduction. Carbon. Neutralizat. 2024, 3, 142-68.

29. Hu, Y.; Yu, C.; Wang, S.; et al. Identifying a highly efficient molecular photocatalytic CO2 reduction system via descriptor-based high-throughput screening. Nat. Catal. 2025, 8, 126-36.

30. Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481.

31. Diamond, L. W.; Akinfiev, N. N. Solubility of CO2 in water from -1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid. Phase. Equilib. 2003, 208, 265-90.

32. Shafaat, H. S.; Yang, J. Y. Uniting biological and chemical strategies for selective CO2 reduction. Nat. Catal. 2021, 4, 928-33.

33. Wang, Y.; Chen, E.; Tang, J. Insight on reaction pathways of photocatalytic CO2 conversion. ACS. Catal. 2022, 12, 7300-16.

34. Wang, H.; Guo, Q.; Zhang, H.; Zuo, C. Developments and challenges on enhancement of photocatalytic CO2 reduction through photocatalysis. Carbon. Resour. Convers. 2024, 7, 100263.

35. Fang, S.; Rahaman, M.; Bharti, J.; et al. Photocatalytic CO2 reduction. Nat. Rev. Methods. Primers. 2023, 3, 61.

36. Ma, Y.; Yi, X.; Wang, S.; et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022, 13, 1400.

37. Cao, Y.; Guo, L.; Dan, M.; et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat. Commun. 2021, 12, 1675.

38. Wu, Y. A.; Mcnulty, I.; Liu, C.; et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy. 2019, 4, 957-68.

39. Yu, H.; Chen, F.; Li, X.; et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594.

40. Fu, C.; Wan, Z.; Yang, X.; Zhang, J.; Zhang, Z. Artificial CO2 photoreduction: a review of photocatalyst design and product selectivity regulation. J. Mater. Chem. A. 2024, 12, 28618-57.

41. Barawi, M.; Mesa, C. A.; Collado, L.; et al. Latest advances in in situ and operando X-ray-based techniques for the characterisation of photoelectrocatalytic systems. J. Mater. Chem. A. 2024, 12, 23125-46.

42. Lin, S. C.; Chang, C. C.; Chiu, S. Y.; et al. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 2020, 11, 3525.

43. Díaz, J. J.; Kudriavtsev, Y.; Asomoza, R.; Mansurova, S.; Montaño, B.; Cosme, I. SIMS analysis of the degradation pathways of methylammonium lead-halide perovskites. Synth. Met. 2024, 307, 117705.

44. Baumann, S.; Eperon, G. E.; Virtuani, A.; et al. Stability and reliability of perovskite containing solar cells and modules: degradation mechanisms and mitigation strategies. Energy. Environ. Sci. 2024, 17, 7566-99.

45. Prete, M.; Khenkin, M. V.; Glowienka, D.; et al. Bias-dependent dynamics of degradation and recovery in perovskite solar cells. ACS. Appl. Energy. Mater. 2021, 4, 6562-73.

46. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; et al. What should we make with CO2 and how can we make it? Joule 2018, 2, 825-32.

47. Welch, A. J.; Digdaya, I. A.; Kent, R.; Ghougassian, P.; Atwater, H. A.; Xiang, C. Comparative technoeconomic analysis of renewable generation of methane using sunlight, water, and carbon dioxide. ACS. Energy. Lett. 2021, 6, 1540-9.

48. Mamun, A. A.; Talukder, M. A. Techno-economic analysis of the direct solar conversion of carbon dioxide into renewable fuels. Energy. Convers. Manag. 2024, 321, 119038.

49. Yusuf, A. O.; Tekle, R. Y.; Amusa, H. K.; Palmisano, G. Technoeconomic assessment of photocatalytic methanol production from liquid CO2 using Cu-doped TiO2. Case. Stud. Chem. Environ. Eng. 2025, 11, 101172.

50. Francis, A. S., S. P.; S, H. K.; K, S.; Tahir, M. A review on recent developments in solar photoreactors for carbon dioxide conversion to fuels. J. CO2. Util. 2021, 47, 101515.

51. Zhang, K.; Gao, Q.; Xu, C.; et al. Current dilemma in photocatalytic CO2 reduction: real solar fuel production or false positive outcomings? Carb. Neutrality. 2022, 1, 10.

52. Gong, E.; Ali, S.; Hiragond, C. B.; et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy. Environ. Sci. 2022, 15, 880-937.

53. Kovačič, Ž.; Likozar, B.; Huš, M. Photocatalytic CO2 reduction: a review of Ab initio mechanism, kinetics, and multiscale modeling simulations. ACS. Catal. 2020, 10, 14984-5007.

54. Yan, Y.; Chen, J.; Li, N.; et al. Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS. Nano. 2018, 12, 3523-32.

55. Hou, J.; Cao, S.; Wu, Y.; et al. Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Chemistry 2017, 23, 9481-5.

56. Mahyoub, S. A.; Hezam, A.; Qaraah, F. A.; et al. Surface plasmonic resonance and Z-scheme charge transport synergy in three-dimensional flower-like Ag-CeO2-ZnO heterostructures for highly improved photocatalytic CO2 reduction. ACS. Appl. Energy. Mater. 2021, 4, 3544-54.

57. Zhang, M.; Liu, Z.; Wang, J.; et al. Generating long-lived charge carriers in CdS quantum dots by Cu-doping for photocatalytic CO2 reduction. Inorg. Chem. 2024, 63, 2234-40.

58. Yang, Z.; Yang, J.; Ji, H.; et al. Construction of S-Co-S internal electron transport bridges in Co-doped CuInS2 for enhancing photocatalytic CO2 reduction. Mater. Today. Chem. 2022, 26, 101078.

59. Wang, J.; Xia, T.; Wang, L.; et al. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: trapping electrons and suppressing H2 evolution. Angew. Chem. Int. Ed. 2018, 57, 16447-51.

60. Yang, J.; Hou, Y.; Sun, J.; et al. Corn-straw-derived, pyridine-nitrogen-rich NCQDs modified Cu0.05Zn2.95In2S6 promoted directional electrons transfer and boosted adsorption and activation of CO2 for efficient photocatalytic reduction of CO2 to CO. Chem. Eng. J. 2023, 472, 145142.

61. Raziq, F.; Hayat, A.; Humayun, M.; et al. Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Appl. Catal. B. Environ. 2020, 270, 118867.

62. Gao, L.; Xiao, W.; Qi, M.; Li, J.; Tan, C.; Tang, Z. Photoredox-catalyzed coupling of CO2 reduction and amines oxidation by Cu doped CdS quantum dots. Mol. Catal. 2024, 554, 113858.

63. Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C-N bond formation in one photoredox cycle. Angew. Chem. Int. Ed. 2021, 60, 7962-70.

64. Cai, M.; Tong, X.; Liao, P.; et al. Manipulating the optically active defect-defect interaction of colloidal quantum dots for carbon dioxide photoreduction. ACS. Catal. 2023, 13, 15546-57.

65. Hou, W.; Guo, H.; Wu, M.; Wang, L. Amide covalent bonding engineering in heterojunction for efficient solar-driven CO2 reduction. ACS. Nano. 2023, 17, 20560-9.

66. Liu, J.; Ma, N.; Wu, W.; He, Q. Recent progress on photocatalytic heterostructures with full solar spectral responses. Chem. Eng. J. 2020, 393, 124719.

67. Lin, J.; He, J.; Huang, Q.; et al. Interfacial Bi-O-C bonds and rich oxygen vacancies synergistically endow carbon quantum dot/Bi2MoO6 with prominent photocatalytic CO2 reduction into CO. Appl. Catal. B. Environ. Energy. 2025, 362, 124747.

68. Wang, J.; Wang, J.; Li, N.; et al. Direct Z-Scheme 0D/2D Heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS. Appl. Mater. Interfaces. 2020, 12, 31477-85.

69. Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

70. Lu, M.; Li, Q.; Zhang, C.; et al. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342-52.

71. Ong, W.; Putri, L. K.; Tan, Y.; et al. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study. Nano. Res. 2017, 10, 1673-96.

72. Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl. Catal. B. Environ. 2018, 230, 194-202.

73. Zhang, Y.; Gao, L.; Qi, M.; Tang, Z.; Xu, Y. Cooperative photoredox coupling of CO2 reduction with thiols oxidation by hybrid CdSe/CdS semiconductor quantum dots. Appl. Catal. B. Environ. Energy. 2025, 367, 125118.

74. Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543-59.

75. Dong, Z.; Zhang, Z.; Jiang, Y.; Chu, Y.; Xu, J. Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction. Chem. Eng. J. 2022, 433, 133762.

76. Wang, Y.; Fan, H.; Liu, X.; et al. 3D ZnO hollow spheres-dispersed CsPbBr3 quantum dots S-scheme heterojunctions for high-efficient CO2 photoreduction. J. Alloys. Compd. 2023, 945, 169197.

77. Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. Highly selective photoconversion of CO2 to CH4 over SnO2/Cs3Bi2Br9 heterojunctions assisted by S-scheme charge separation. ACS. Catal. 2023, 13, 12623-33.

78. Zhang, Y.; Tian, Y.; Chen, W.; Zhou, M.; Ou, S.; Liu, Y. Construction of a bismuthene/CsPbBr3 quantum dot S-scheme heterojunction and enhanced photocatalytic CO2 reduction. J. Phys. Chem. C. 2022, 126, 3087-97.

79. Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, e2103447.

80. Yang, Y.; Zhang, C.; Lai, C.; et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv. Colloid. Interface. Sci. 2018, 254, 76-93.

81. Muhammad, P.; Zada, A.; Rashid, J.; et al. Defect engineering in nanocatalysts: from design and synthesis to applications. Adv. Funct. Mater. 2024, 34, 2314686.

82. Du, C.; Sheng, J.; Zhong, F.; et al. Boosting exciton dissociation and charge transfer in CsPbBr3 QDs via ferrocene derivative ligation for CO2 photoreduction. Proc. Natl. Acad. Sci. USA. 2024, 121, e2315956121.

83. Chen, Z.; Hu, Y.; Wang, J.; et al. Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes. Chem. Mater. 2020, 32, 1517-25.

84. Sahm, C. D.; Ciotti, A.; Mates-Torres, E.; et al. Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO2 reduction. Chem. Sci. 2022, 13, 5988-98.

85. Yu, R.; Ma, T.; Huang, X.; et al. Boosting CO2 photoreduction over perovskite quantum dots decorated with dispersed ruthenium nanoparticles. J. Colloid. Interface. Sci. 2025, 687, 95-104.

86. Yang, J.; Song, N.; Du, C.; et al. Capture and photocatalytic conversion of low-concentration CO2 using a self-assembled CdSe@carbonic anhydrase biohybrid system. ChemSusChem 2025, 18, e202500856.

87. Wang, F.; Hou, T.; Zhao, X.; et al. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, e2102690.

88. Wu, J.; Deng, B. Y.; Liu, J.; et al. Assembling CdSe quantum dots into polymeric micelles formed by a polyethylenimine-based amphiphilic polymer to enhance efficiency and selectivity of CO2-to-CO photoreduction in water. ACS. Appl. Mater. Interfaces. 2022, 14, 29945-55.

89. Kong, Z.; Liao, J.; Dong, Y.; et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS. Energy. Lett. 2018, 3, 2656-62.

90. Wu, T.; Liu, X.; Liu, Y.; et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation. Coord. Chem. Rev. 2020, 403, 213097.

91. Ding, L.; Bai, F.; Borjigin, B.; Li, Y.; Li, H.; Wang, X. Embedding Cs2AgBiBr6 QDs into Ce-UiO-66-H to in situ construct a novel bifunctional material for capturing and photocatalytic reduction of CO2. Chem. Eng. J. 2022, 446, 137102.

92. Ding, L.; Ding, Y.; Bai, F.; et al. In situ growth of Cs3Bi2Br9 quantum dots on Bi-MOF nanosheets via cosharing bismuth atoms for CO2 capture and photocatalytic reduction. Inorg. Chem. 2023, 62, 2289-303.

93. Wang, H.; Wang, H.; Wang, Z.; et al. Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 2020, 49, 4135-65.

94. Wang, T.; Liang, H.; Anito, D. A.; Ding, X.; Han, B. Emerging applications of porous organic polymers in visible-light photocatalysis. J. Mater. Chem. A. 2020, 8, 7003-34.

95. He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. Boosting artificial photosynthesis: CO2 chemisorption and S-scheme charge separation via anchoring inorganic QDs on COFs. ACS. Catal. 2024, 14, 1951-61.

96. Cheng, J.; Wang, W.; Zhang, J.; et al. Confining quantum dots within covalent organic framework cages for coupled CO2 photoreduction and value-added chemical synthesis. Adv. Mater. 2025, 37, e12144.

97. Shen, Z.; Yang, Y.; Li, Y.; et al. Titanium carbide sealed cadmium sulfide quantum dots on carbon, oxygen-doped boron nitride for enhanced and durable photochemical carbon dioxide reduction. J. Colloid. Interface. Sci. 2024, 665, 443-51.

98. Guo, Z.; Barry, B. A. Calcium, ammonia, redox-active tyrosine YZ, and proton-coupled electron transfer in the photosynthetic oxygen-evolving complex. J. Phys. Chem. B. 2017, 121, 3987-96.

99. Badger, M. R.; Price, G. D. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 2003, 54, 609-22.

100. Ünlü, A.; Duman-Özdamar, Z. E.; Çaloğlu, B.; Binay, B. Enzymes for efficient CO2 conversion. Protein. J. 2021, 40, 489-503.

101. Kim, C. U.; Song, H.; Avvaru, B. S.; Gruner, S. M.; Park, S.; McKenna, R. Tracking solvent and protein movement during CO2 release in carbonic anhydrase II crystals. Proc. Natl. Acad. Sci. USA. 2016, 113, 5257-62.

102. DiMario, R. J.; Machingura, M. C.; Waldrop, G. L.; Moroney, J. V. The many types of carbonic anhydrases in photosynthetic organisms. Plant. Sci. 2018, 268, 11-7.

103. Talekar, S.; Jo, B. H.; Dordick, J. S.; Kim, J. Carbonic anhydrase for CO2 capture, conversion and utilization. Curr. Opin. Biotechnol. 2022, 74, 230-40.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/