REFERENCES

1. Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126-9.

2. Deng, X.; Li, J.; Ma, L.; Sha, J.; Zhao, N. Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems. Mater. Chem. Front. 2019, 3, 2221-45.

3. Zeng, X.; Xu, Y.; Yin, Y.; Wu, X.; Yue, J.; Guo, Y. Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Mater. Today. Nano. 2019, 8, 100057.

4. Liu, X.; Wang, Y.; Yang, Y.; et al. A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano. Energy. 2020, 70, 104550.

5. Usiskin, R.; Lu, Y.; Popovic, J.; et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020-35.

6. Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M. I. Prospects in anode materials for sodium ion batteries - a review. Renew. Sust. Energ. Rev. 2020, 119, 109549.

7. Fan, E.; Li, L.; Wang, Z.; et al. Sustainable recycling technology for Li-Ion batteries and beyond: challenges and future prospects. Chem. Rev. 2020, 120, 7020-63.

8. Jiao, J.; Wu, K.; Li, N.; et al. Tuning anionic redox activity to boost high-performance sodium-storage in low-cost Na0.67Fe0.5Mn0.5O2 cathode. J. Energy. Chem. 2022, 73, 214-22.

9. Qi, Y.; Tong, Z.; Zhao, J.; et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes. Joule 2018, 2, 2348-63.

10. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: present and future. Chem. Soc. Rev. 2017, 46, 3529-614.

11. Rajagopalan, R.; Tang, Y.; Jia, C.; Ji, X.; Wang, H. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy. Environ. Sci. 2020, 13, 1568-92.

12. Xie, F.; Chen, J.; Xu, J.; et al. Investigation of Na7V3(P2O7)4/carbon composite as cathode material for sodium-ion battery: influences of carbon additives and voltage windows. J. Energy. Storage. 2024, 77, 109855.

13. Fang, Y.; Zhang, J.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. (Weinh). 2017, 4, 1600392.

14. Chen, S.; Wu, C.; Shen, L.; et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29.

15. Zhuang, S.; Yang, C.; Zheng, M.; et al. A combined first principles and experimental study on Al-doped Na3V2(PO4)2F3 cathode for rechargeable Na batteries. Surf. Coat. Tech. 2022, 434, 128184.

16. Zhou, L.; Zhuang, Z.; Zhao, H.; Lin, M.; Zhao, D.; Mai, L. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29.

17. Sun, D.; Ye, D.; Liu, P.; et al. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy. Mater. 2018, 8, 1702383.

18. Wang, W.; Li, W.; Wang, S.; Miao, Z.; Liu, H. K.; Chou, S. Structural design of anode materials for sodium-ion batteries. J. Mater. Chem. A. 2018, 6, 6183-205.

19. Xue, X.; Sun, D.; Zeng, X.; et al. Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries. J. Cent. South. Univ. 2018, 25, 2320-31.

20. Huang, Z.; Hou, H.; Wang, C.; Li, S.; Zhang, Y.; Ji, X. Molybdenum phosphide: a conversion-type anode for ultralong-life sodium-ion batteries. Chem. Mater. 2017, 29, 7313-22.

21. Sun, D.; Luo, B.; Wang, H.; Tang, Y.; Ji, X.; Wang, L. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano. Energy. 2019, 64, 103937.

22. Liu, N.; He, Z.; Zhu, J.; et al. Crystal doping of K ion on Na site raises the electrochemical performance of NaTi2(PO4)3/C anode for sodium-ion battery. Ionics 2020, 26, 3387-94.

23. Lao, M.; Zhang, Y.; Luo, W.; Yan, Q.; Sun, W.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29.

24. Hao, Y.; Li, X.; Liu, W.; et al. Depolarization of Li-rich Mn-based oxide via electrochemically active Prussian blue interface providing superior rate capability. Carbon. Energy. 2023, 5, e272.

25. Su, H.; Jaffer, S.; Yu, H. Transition metal oxides for sodium-ion batteries. Energy. Storage. Mater. 2016, 5, 116-31.

26. Cao, Y.; He, Y.; Gang, H.; et al. Stability study of transition metal oxide electrode materials. J. Power. Sources. 2023, 560, 232710.

27. Sang, L.; Wang, K.; Wu, Y.; Ma, C. The improved solar weighted absorptance and thermal stability of desert sand coated with transition metal oxides for direct particle receiver. Sol. Energy. Mater. Sol. Cells. 2023, 251, 112158.

28. Rao, T.; Zhou, Y.; Jiang, J.; Yang, P.; Liao, W. Low dimensional transition metal oxide towards advanced electrochromic devices. Nano. Energy. 2022, 100, 107479.

29. Liu, Z.; Huang, Y.; Huang, Y.; et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180-232.

30. Camacho, P. S.; Wernert, R.; Duttine, M.; et al. Impact of synthesis conditions in Na-rich Prussian blue analogues. ACS. Appl. Mater. Interfaces. 2021, 13, 42682-92.

31. Li, J.; Yi, H.; Xiao, Y.; et al. Freestanding catalytic membranes assembled from blade-shaped Prussian blue analog sheets for flow-through degradation of antibiotic pollutants. Appl. Catal. B:. Environ. 2023, 336, 122922.

32. Chun, J.; Wang, X.; Wei, C.; Wang, Z.; Zhang, Y.; Feng, J. Flexible and free-supporting Prussian blue analogs /MXene film for high-performance sodium-ion batteries. J. Power. Sources. 2023, 576, 233165.

33. Han, J.; Hu, Y.; Han, Q.; Liu, X.; Wang, C. Synthesis of high-specific-capacity Prussian blue analogues for sodium-ion batteries boosted by grooved structure. J. Alloys. Compd. 2023, 950, 169928.

34. Xu, N.; Lei, H.; Hou, T.; et al. Constructing an asymmetric supercapacitor based on Prussian blue analogues-derived cobalt selenide nanoframeworks and iron oxide nanoparticles. Electrochimica. Acta. 2023, 439, 141686.

35. Yang, Y.; Guo, C.; Zeng, Y.; Luo, Y.; Xu, J.; Wang, C. Peroxymonosulfate activation by CuFe-Prussian blue analogues for the degradation of bisphenol S: effect, mechanism, and pathway. Chemosphere 2023, 331, 138748.

36. Okubo, M.; Li, C. H.; Talham, D. R. High rate sodium ion insertion into core-shell nanoparticles of Prussian blue analogues. Chem. Commun. (Camb). 2014, 50, 1353-5.

37. He, M.; Davis, R.; Chartouni, D.; et al. Assessment of the first commercial Prussian blue based sodium-ion battery. J. Power. Sources. 2022, 548, 232036.

38. Yue, Y.; Binder, A. J.; Guo, B.; et al. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. Engl. 2014, 53, 3134-7.

39. Peng, J.; Zhang, W.; Liu, Q.; et al. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 2022, 34, e2108384.

40. Wang, W.; Gang, Y.; Hu, Z.; et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980.

41. Dong, Y.; Di, S.; Zhang, F.; et al. Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries. J. Mater. Chem. A. 2020, 8, 3252-61.

42. Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. (Weinh). 2017, 4, 1600275.

43. Zhao, L.; Zhang, T.; Zhao, H.; Hou, Y. Polyanion-type electrode materials for advanced sodium-ion batteries. Mater. Today. Nano. 2020, 10, 100072.

44. Yuan, Y.; Wei, Q.; Yang, S.; et al. Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy. Storage. Mater. 2022, 50, 760-82.

45. Gao, Y.; Zhang, H.; Liu, X.; et al. Low-cost polyanion-type sulfate cathode for sodium-ion battery. Adv. Energy. Mater. 2021, 11, 2101751.

46. Yuan, D.; Liang, X.; Wu, L.; et al. A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 2014, 26, 6301-6.

47. You, Y.; Wu, X.; Yin, Y.; Guo, Y. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy. Environ. Sci. 2014, 7, 1643-7.

48. Wang, L.; Song, J.; Qiao, R.; et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2548-54.

49. Jin, T.; Li, H.; Zhu, K.; Wang, P. F.; Liu, P.; Jiao, L. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342-77.

50. Xiang, X.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343-64.

51. Liang, K.; Wu, D.; Ren, Y.; Huang, X.; Ma, J. Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries. Chin. Chem. Lett. 2023, 34, 107978.

52. Rajagopalan, R.; Tang, Y.; Ji, X.; Jia, C.; Wang, H. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

53. Chen, Y.; Zhao, Y.; Tian, S.; Wang, P.; Qiu, F.; Yi, T. Recent progress and strategic perspectives of high-voltage Na3V2(PO4)2F3 cathode: fundamentals, modifications, and applications in sodium-ion batteries. Compos. B:. Eng. 2023, 266, 111030.

54. Hu, J.; Zhao, W.; Wang, Y.; et al. The role of fluorine in polyanionic cathode materials for sodium-ion batteries. Small. Methods. 2025, e2402099.

55. Zhu, L.; Wang, H.; Sun, D.; Tang, Y.; Wang, H. A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. J. Mater. Chem. A. 2020, 8, 21387-407.

56. Bianchini, M.; Brisset, N.; Fauth, F.; et al. Na3V2(PO4)2F3 revisited: a high-resolution diffraction study. Chem. Mater. 2014, 26, 4238-47.

57. Bianchini, M.; Fauth, F.; Brisset, N.; et al. Comprehensive investigation of the Na3V2(PO4)2F3 - Na3V2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction. Chem. Mater. 2015, 27, 3009-20.

58. Chen, X.; Wu, Q.; Guo, P.; Liu, X. Rational design of two dimensional single crystalline Na3V2(PO4)2F3 nanosheets for boosting Na+ migration and mitigating grain pulverization. J. Chem. Eng. 2022, 439, 135533.

59. Deng, L.; Yu, F.; Xia, Y.; et al. Stabilizing fluorine to achieve high-voltage and ultra-stable Na3V2(PO4)2F3 cathode for sodium ion batteries. Nano. Energy. 2021, 82, 105659.

60. Gu, Z. Y.; Guo, J. Z.; Cao, J. M.; et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 2022, 34, e2110108.

61. Li, L.; Zhang, N.; Su, Y.; et al. Fluorine dissolution-induced capacity degradation for fluorophosphate-based cathode materials. ACS. Appl. Mater. Interfaces. 2021, 13, 23787-93.

62. Yang, Z.; Li, G.; Sun, J.; et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)2F3 for sodium-ion batteries. Energy. Storage. Mater. 2020, 25, 724-30.

63. Yi, H.; Ling, M.; Xu, W.; Li, X.; Zheng, Q.; Zhang, H. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: analysis of electrochemical performance and kinetic properties. Nano. Energy. 2018, 47, 340-52.

64. Deng, L.; Sun, G.; Goh, K.; et al. Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries. Electrochimica. Acta. 2019, 298, 459-67.

65. Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 2016, 7, 10308.

66. Wang, M.; Huang, X.; Wang, H.; Zhou, T.; Xie, H.; Ren, Y. Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries. RSC. Adv. 2019, 9, 30628-36.

67. Liu, Q.; Wang, D.; Yang, X.; et al. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A. 2015, 3, 21478-85.

68. Li, L.; Xu, Y.; Sun, X.; He, S.; Li, L. High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na3V2(PO4)2F3 nanoparticles. Chem. Eng. J. 2018, 331, 712-9.

69. Liu, Q.; Meng, X.; Wei, Z.; et al. Core/Double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2016, 8, 31709-15.

70. Jiang, T.; Chen, G.; Li, A.; Wang, C.; Wei, Y. Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys. Compd. 2009, 478, 604-7.

71. Eshraghi, N.; Caes, S.; Mahmoud, A.; Cloots, R.; Vertruyen, B.; Boschini, F. Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles. Electrochimica. Acta. 2017, 228, 319-24.

72. Shen, C.; Long, H.; Wang, G.; Lu, W.; Shao, L.; Xie, K. Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J. Mater. Chem. A. 2018, 6, 6007-14.

73. Leng, J.; Wang, Z.; Wang, J.; et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 2019, 48, 3015-72.

74. Yi, H.; Lin, L.; Ling, M.; et al. Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal-ball-milling method. ACS. Energy. Lett. 2019, 4, 1565-71.

75. Hu, F.; Jiang, X. Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries. Inorg. Chem. Commun. 2021, 129, 108653.

76. Cai, Y.; Cao, X.; Luo, Z.; et al. Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling. Adv. Sci. (Weinh). 2018, 5, 1800680.

77. Li, Y.; Liang, X.; Zhong, G.; et al. Fiber-shape Na3V2(PO4)2F3@N-Doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 25920-9.

78. Li, X.; Chen, W.; Qian, Q.; et al. Electrospinning-based strategies for battery materials. Adv. Energy. Mater. 2021, 11, 2000845.

79. Qiu, R.; Fei, R.; Guo, J.; et al. Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge. J. Power. Sources. 2020, 466, 228249.

80. Shen, X.; Zhou, Q.; Han, M.; et al. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 2021, 12, 2848.

81. Minart, G.; Croguennec, L.; Weill, F.; Labrugère-Sarroste, C.; Olchowka, J. Increasing tap density of carbon-coated Na3V2(PO4)2F3 via mechanical grinding: good or bad idea? ACS. Appl. Energy. Mater. 2024, 7, 11334-42.

82. Serras, P.; Palomares, V.; Goñi, A.; Kubiak, P.; Rojo, T. Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3-2x/C as cathode for sodium-ion batteries. J. Power. Sources. 2013, 241, 56-60.

83. Serras, P.; Palomares, V.; Goñi, A.; et al. High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3-2x. J. Mater. Chem. 2012, 22, 22301.

84. Zhu, P.; Peng, W.; Guo, H.; et al. Toward high-performance sodium storage cathode: construction and purification of carbon-coated Na3V2(PO4)2F3 materials. J. Power. Sources. 2022, 546, 231986.

85. Jiang, N.; Zhang, L.; Cui, C.; Gao, L.; Yang, X. Synthesis and electrochemical performance of uniform carbon-coated Na3V2(PO4)2F3 using tannic acid as a chelating agent and carbon source. ACS. Appl. Energy. Mater. 2022, 5, 249-56.

86. Zhang, J.; Zhang, C.; Han, Y.; Zhao, X.; Liu, W.; Ding, Y. A surface-modified Na3V2(PO4)2F3 cathode with high rate capability and cycling stability for sodium ion batteries. RSC. Adv. 2024, 14, 13703-10.

87. Wang, S.; Li, J.; Xu, L.; et al. Manipulation of Na3V2(PO4)2F3 via aluminum doping to alter local electron states toward an advanced cathode for sodium-ion batteries. Rare. Met. 2024, 43, 4253-62.

88. Guan, J.; Zhou, S.; Zhou, J.; et al. Microwave-assisted hydrothermal synthesis of Na3V2(PO4)2F3 nanocuboid@reduced graphene oxide as an ultrahigh-rate and superlong-lifespan cathode for fast-charging sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2024. DOI: 10.1021/acsami.4c01894.s001.

89. Al-Marri, A. H. Superior electrochemical properties of Na3V2(PO4)2F3/rGO composite cathode for high-performance sodium-ion batteries. J. Solid. State. Electrochem. 2024, 28, 2861-72.

90. Liang, K.; Zhao, H.; Li, J.; et al. Engineering crystal growth and surface modification of Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Small 2023, 19, e2207562.

91. Zhai, X.; Chen, X.; Zhang, Q.; et al. Temperature-dependent defect evolution and electrochemical performance enhancement of Na3V2(PO4)2F3. J. Alloys. Compd. 2023, 952, 170001.

92. Lin, Z. Phase formation in NaH2PO4-VOSO4-NaF-H2O system and rapid synthesis of Na3V2O2x(PO4)2F3-2x. Crystals 2024, 14, 43.

93. Wang, S.; Liang, K.; Li, J.; Huang, X.; Ren, Y. Surfactant-assisted synthesis of self-assembled Na3V2(PO4)2F3@C microspheres as the cathode for Na-ion batteries. Vacuum 2023, 211, 111894.

94. Moossa, B.; Abraham, J. J.; Ahmed, A. M.; Kahraman, R.; Al-qaradawi, S.; Shakoor, R. Synergistic effect of NASICON Na3V2(PO4)2F3 and 2D MXene for high-performance symmetric Sodium-ion batteries. Mater. Res. Bull. 2025, 182, 113173.

95. Guo, S.; Peng, J.; Sharma, N.; et al. Optimizing Sc-doped Na3V2(PO4)2F3/C as a high-performance cathode material for sodium-ion battery applications. Chem. Mater. 2025, 37, 1500-12.

96. Sun, C.; Zhang, L.; Xiong, X.; Deng, Z.; Sun, H.; Yang, X. Electronic/Ionic dual functional layer-coated Na3V2(PO4)2F3 cathode with high sodium storage performance. ACS. Sustainable. Chem. Eng. 2024, 12, 10892-904.

97. Yang, Y.; Xu, G. R.; Tang, A. P.; et al. Na3V2(PO4)2F3-decorated Na3V2(PO4)2F3 as a high-rate and cycle-stable cathode material for sodium ion batteries. RSC. Adv. 2024, 14, 11862-71.

98. Qin, Y.; Li, L.; Zhao, H.; et al. Effect of chelator content on the structural and electrochemical performance of Na3V2(PO4)2F3 by sol-gel preparation. CrystEngComm 2022, 24, 4519-26.

99. Mahato, S.; Das, S.; Gupta, D.; Biswas, K. Vanadium substituted Fe, Cr co-doped high performance C/Na3V2(PO4)2F3 cathode for sodium-ion batteries. J. Electroanal. Chem. 2024, 955, 118046.

100. Liang, K.; Zhao, H.; Li, J.; Huang, X.; Ren, Y. High-performance Na3V2(PO4)2F3 cathode obtained by a three-in-one strategy for self-sodium compensation, interface modification, and crosslinked carbon coatings. Appl. Surface. Sci. 2023, 615, 156412.

101. Hu, Z.; Zhang, R.; Fan, C.; et al. Synergistic effect, structural and morphology evolution, and doping mechanism of spherical Br-doped Na3V2(PO4)2F3/C toward enhanced sodium storage. Small 2022, 18, e2201719.

102. Zhou, Q.; Wang, Y.; Ou, R.; et al. Yolk-Shell Construction of Na3V2(PO4)2F3 with copper substitution microsphere as high-rate and long-cycling cathode materials for sodium-ion batteries. Small 2024, 20, e2310699.

103. Lei, L.; Sun, K.; Zhao, H.; Wang, C.; Wei, T. Large scale preparation of Na3V2(PO4)2F3 with cross-linked double carbon network for high energy density sodium ion batteries at -20 °C. J. Energy. Storage. 2024, 78, 109923.

104. Guo, R.; Li, W.; Lu, M.; et al. Na3V2(PO4)2F3@bagasse carbon as cathode material for lithium/sodium hybrid ion battery. Phys. Chem. Chem. Phys. 2022, 24, 5638-45.

105. Liang, M.; Li, W.; Yang, Y.; et al. Carbon Nanofiber/ Na3V2(PO4)2F3 particle composites as a self-standing cathode for high-voltage flexible sodium-ion batteries. ACS. Appl. Nano. Mater. 2023, 6, 22275-82.

106. Song, Z.; Liu, Y.; Guo, Z.; et al. Ultrafast synthesis of large-sized and conductive Na3V2(PO4)2F3 simultaneously approaches high tap density, rate and cycling capability. Adv. Funct. Mater. 2024, 34, 2313998.

107. Wang, J.; Jing, H.; Wang, X.; et al. Electrostatically shielded transportation enabling accelerated Na+ diffusivity in high-performance fluorophosphate cathode for sodium-ion batteries. Adv. Funct. Mater. 2024, 34, 2315318.

108. Ling, R.; Zhao, S.; Yang, C.; Qi, W. Three-dimensional ordered microporous Na3V2(PO4)2F3@C/carbon cloth as high-rate and stable flexible cathodes for Na-ion and Zn-ion batteries. Appl. Surf. Sci. 2023, 620, 156875.

109. Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; et al. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. (Beijing). 2020, 65, 702-10.

110. Zhang, L. L.; Zhou, Y. X.; Li, T.; Ma, D.; Yang, X. L. Multi-heteroatom doped carbon coated Na3V2(PO4)2F3 derived from ionic liquids. Dalton. Trans. 2018, 47, 4259-66.

111. Li, F.; Zhao, Y.; Xia, L.; Yang, Z.; Wei, J.; Zhou, Z. Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries. J. Mater. Chem. A. 2020, 8, 12391-7.

112. Yang, X.; Wang, X.; Zhen, W. Reversible Na+-extraction/insertion in nitrogen-doped graphene-encapsulated Na3V2(PO4)2F3@C electrode for advanced Na-ion battery. Ceram. Int. 2020, 46, 9170-5.

113. Hu, L.; Cheng, S.; Xiao, S.; et al. Dually decorated Na3V2(PO4)2F3 by carbon and 3D graphene as cathode material for sodium-ion batteries with high energy and power densities. ChemElectroChem 2020, 7, 3975-83.

114. Guo, H.; Hu, Y.; Zhang, X.; et al. Facile one-step hydrothermal synthesis of Na3V2(PO4)2F3/CNTs tetragonal micro-particles as high performance cathode material for Na-ion batteries. Front. Chem. 2019, 7, 689.

115. Kosova, N.; Rezepova, D. Mixed sodium-lithium vanadium fluorophosphates Na3-xLixV2(PO4)2F3: the origin of the excellent high-rate performance. J. Power. Sources. 2018, 408, 120-7.

116. Li, L.; Liu, X.; Tang, L.; Liu, H.; Wang, Y. Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. J. Alloys. Compd. 2019, 790, 203-11.

117. Liu, W.; Yi, H.; Zheng, Q.; Li, X.; Zhang, H. Y-doped Na3V2(PO4)2F3 compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties. J. Mater. Chem. A. 2017, 5, 10928-35.

118. Criado, A.; Lavela, P.; Pérez-vicente, C.; Ortiz, G.; Tirado, J. Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries. J. Electroanal. Chem. 2020, 856, 113694.

119. Guo, C.; Yang, J.; Cui, Z.; et al. In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. J. Energy. Chem. 2022, 65, 514-23.

120. Cao, J.; Wang, Y.; Chen, Y.; et al. Improved sodium storage properties of co-doped Na3V2(PO4)2F3@graphene as anode material for sodium ion batteries. Ferroelectrics 2021, 584, 221-9.

121. Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; et al. Aliovalent-ion-induced lattice regulation based on charge balance theory: advanced fluorophosphate cathode for sodium-ion full batteries. Small 2021, 17, e2102010.

122. Zhang, Y.; Guo, S.; Xu, H. Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries. J. Mater. Chem. A. 2018, 6, 4525-34.

123. Li, L.; Xu, Y.; Chang, R.; Wang, C.; He, S.; Ding, X. Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for sodium-ion batteries. Energy. Storage. Mater. 2021, 37, 325-35.

124. Gu, Z.; Guo, J.; Zhao, X.; et al. High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat 2021, 3, 694-704.

125. Missaoui, K.; Ferchichi, K.; Amdouni, N.; et al. Polyaniline-coated Na3V2(PO4)2F3 cathode enables fast sodium ion diffusion and structural stability in rechargeable batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 50550-60.

126. Mani, K. P. L.; Venkatesh, M.; Nandy, S.; et al. Outstanding specific energy achieved via reversible cycling of V4+/V2+ redox couple in N-doped carbon coated Na3V2(PO4)2F3: an ex-situ XRD, XPS and XAS study. Mater. Today. Energy. 2025, 48, 101802.

127. Sun, C.; Zhang, L.; Deng, Z.; Yan, B.; Gao, L.; Yang, X. PTFE-derived carbon-coated Na3V2(PO4)2F3 cathode material for high-performance sodium ion battery. Electrochimica. Acta. 2022, 432, 141187.

128. Hu, Y.; Chen, P.; Liu, F.; et al. Dual-anion ether electrolyte enables stable high-voltage Na3V2(PO4)2F3 cathode under wide temperatures. J. Power. Sources. 2024, 602, 234405.

129. Zhao, W.; Wang, W.; Hu, G.; et al. Facial construction of high rate Na3V2(PO4)2F3/C microspheres with fluorocarbon layer by deep-eutectic solvent synthesis. Electrochimica. Acta. 2023, 440, 141718.

130. Yang, X.; Wang, M.; Xiang, X.; Liu, S.; Chen, C. An open-system synthesis approach to achieve high-rate Na3(VO)2(PO4)2F/C microcubes cathode for sodium-ion batteries. J. Electroanal. Chem. 2024, 956, 118088.

131. Zhang, Y.; Song, W.; Tang, Y.; Jia, D.; Huang, Y. Amylopectin-assisted fabrication of in situ carbon-coated Na3V2(PO4)2F3 nanosheets for ultra-fast sodium storage. ACS. Appl. Mater. Interfaces. 2022, 14, 40812-21.

132. Wang, M.; Wang, Y.; Xin, Y.; Liu, Q.; Wu, F.; Gao, H. Nitrogen-doped carbon coated Na3V2(PO4)2F3 derived from polyvinylpyrrolidone as a high-performance cathode for sodium-ion batteries. ACS. Appl. Energy. Mater. 2023, 6, 4453-61.

133. Sun, C.; Zhang, L. L.; Deng, Z. R.; Sun, H. B.; Yang, X. L. Achieving high-performance Na3V2(PO4)2F3 cathode material through a bifunctional N-doped carbon network. ACS. Appl. Mater. Interfaces. 2024, 16, 35179-89.

134. Xu, J.; Tang, A.; Wen, Q.; et al. N/S dual-doped KB-decorated Na3V2(PO4)2F3 as high-performance cathode for advanced sodium storage properties. Ionics 2024, 30, 7037-49.

135. Wang, A.; Tian, Z.; Li, X.; Chai, Y.; Wang, N. Codoping of carbon and boron composition in Na3V2(PO4)2F3 affects its sodium storage properties. J. Electroanal. Chem. 2024, 974, 118741.

136. Zhang, X.; Tian, H.; Zhang, Y.; Cai, Y.; Yao, X.; Su, Z. Diatomic-doped carbon layer decorated Na3V2(PO4)2F3 as a durable ultrahigh-stability cathode for sodium ion batteries. New. J. Chem. 2023, 47, 9611-7.

137. Yu, X.; Lu, T.; Li, X.; et al. Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries. RSC. Adv. 2022, 12, 14007-17.

138. Yu, X.; Lu, T.; Li, X.; et al. Ionic liquid-acrylic acid copolymer derived nitrogen-boron codoped carbon-covered Na3V2(PO4)2F3 as cathode material of high-performance sodium-ion batteries. Langmuir 2022, 38, 7815-24.

139. Zhang, X.; Tian, H.; Cai, Y.; Wang, L.; Yao, X.; Su, Z. Effects of nitrogen and sulfur atom regulation on electrochemical properties of Na3V2(PO4)2F3 cathode material for Na-ion batteries. Ceram. Int. 2022, 48, 36129-35.

140. Tang, K.; Tian, H.; Zhang, Y.; et al. Multilevel carbon composite construction of NASICON-type NaVPO4F/C/CNT cathode material for enhanced-performance sodium-ion batteries. J. Mater. Chem. C. 2025, 13, 6605-13.

141. Ma, W. L.; Zhou, Y.; Zhao, X. W.; et al. Ultra-fast-charging, long-duration, and wide-temperature-range sodium storage enabled by multiwalled carbon nanotube-hybridized biphasic polyanion-type phosphate cathode materials. ACS. Appl. Mater. Interfaces. 2024, 16, 34819-29.

142. Li, L.; Qin, Y.; Zhang, S.; et al. Ion transport through carbon nanotubes enable highly crystalline Na3V2(PO4)2F3 cathode for ultra-stable sodium-ion storage. J. Power. Sources. 2023, 576, 233226.

143. Zhang, Q.; Sun, X.; Liu, K.; Xu, Q.; Zheng, S.; Dai, S. Synergistic coupling effect of electronic conductivity and interphase compatibility on high-voltage Na3V2(PO4)2F3 cathodes. ACS. Sustainable. Chem. Eng. 2023, 11, 12992-3001.

144. Gao, J.; Tian, Y.; Ni, L.; et al. Robust cross-linked Na3V2(PO4)2F3 full sodium-ion batteries. Energy. Environ. Mater. 2024, 7, e12485.

145. Qin, M.; Qin, N.; Lei, M.; et al. Construction of Na3V2(PO4)2F3@C/CNTs nanocomposites with three-dimensional conductive network as cathode materials for sodium-ion batteries. J. Electroanal. Chem. 2022, 920, 116613.

146. He, J.; Tao, T.; Yang, F.; Sun, Z.; Huang, H. Phase-manipulated hierarchically core-shell Na3(VO1-xPO4)2F1+2x(0 ≤ x ≤ 1)@Na3V2(PO4)3 and its synergistic effect with conformally wrapped reduced graphene oxide framework towards high-performance cathode for sodium-ion batteries. Mater. Today. Phys. 2022, 27, 100813.

147. Xu, S.; Zhu, Y.; Li, X.; et al. PVA-regulated construction of 3D rGO-hosted Na3V2(PO4)2F3 for fast and stable sodium storage. J. Energy. Chem. 2024, 99, 100-9.

148. Huang, Q.; Shao, L.; Shi, X.; et al. Na3V2O2(PO4)2F nanoparticles@reduced graphene oxide: a high-voltage polyanionic cathode with enhanced reaction kinetics for aqueous zinc-ion batteries. Chem. Eng. J. 2023, 468, 143738.

149. Ou, J.; Wang, H.; Deng, H.; Li, B.; Zhang, H. Hydrothermally prepared composite of Na3V2(PO4)2F3 with gelatin and graphene used as a high-performance sodium ion battery cathode. J. Alloys. Compd. 2022, 926, 166857.

150. Shi, C.; Xu, J.; Tao, T.; et al. Zero-Strain Na3V2(PO4)2F3@Rgo/CNT composite as a wide-temperature-tolerance cathode for Na-ion batteries with ultrahigh-rate performance. Small. Methods. 2024, 8, e2301277.

151. Zheng, Q.; Ni, X.; Lin, L.; et al. Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na3V2(PO4)2F3 for sodium ion batteries. J. Mater. Chem. A. 2018, 6, 4209-18.

152. Kuang, Q.; Zhao, Y.; Liang, Z. Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries. J. Power. Sources. 2011, 196, 10169-75.

153. Wu, Q.; Ma, Y.; Zhang, S.; et al. Achieving a rapid Na+ migration and highly reversible phase transition of NASICON for sodium-ion batteries with suppressed voltage hysteresis and ultralong lifespan. Small 2024, 20, e2404660.

154. Fu, W.; Li, B.; Wang, P.; Lin, Z.; Zhu, K. A high-entropy carbon-coated Na3V1.9(Mg, Cr, Al, Mo, Nb)0.1(PO4)2F3 cathode for superior performance sodium-ion batteries. Ceram. Int. 2024, 50, 16166-71.

155. Yang, J.; Liu, N.; Jiang, G.; et al. Synthesis and investigation of sodium storage properties in Na3V1.9Fe0.1(PO4)2F3@N-CNTs cathode material for sodium ion batteries. Chem. Eng. J. 2024, 485, 149834.

156. Puspitasari, D. A.; Patra, J.; Hung, I.; Bresser, D.; Lee, T.; Chang, J. Optimizing the Mg doping concentration of Na3V2-xMgx(PO4)2F3/C for enhanced sodiation/desodiation properties. ACS. Sustainable. Chem. Eng. 2021, 9, 6962-71.

157. Ren, K.; Qiu, J.; Liu, H.; Song, H.; Li, Q.; Li, J. Low-valence Mg2+ doping suppresses irreversible phase transition of sodium-rich fluorophosphate upon additional Na+ deintercalation. ACS. Appl. Energy. Mater. 2025, 8, 3066-73.

158. Olchowka, J.; Nguyen, L. H. B.; Broux, T.; et al. Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials. Chem. Commun. (Camb). 2019, 55, 11719-22.

159. Pineda-Aguilar, N.; Gallegos-Sánchez, V. J.; Sánchez, E. M.; Torres-gonzález, L. C.; Garza-tovar, L. L. Aluminum doped Na3V2(PO4)2F3 via sol-gel Pechini method as a cathode material for lithium ion batteries. J. Sol-Gel. Sci. Technol. 2017, 83, 405-12.

160. Wang, J.; Liu, Q.; Cao, S.; Zhu, H.; Wang, Y. Boosting sodium-ion battery performance with binary metal-doped Na3V2(PO4)2F3 cathodes. J. Colloid. Interface. Sci. 2024, 665, 1043-53.

161. Chen, Q.; Gong, F.; Pan, S.; Chen, W. Effects of Bi doping on the electrochemical performance of Na3V2(PO4)3F3 cathode material for sodium ion batteries. Solid. State. Ionics. 2024, 414, 116621.

162. Puspitasari, D. A.; Patra, J.; Hernandha, R. F. H.; et al. Enhanced electrochemical performance of Ca-doped Na3V2(PO4)2F3/C cathode materials for sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 496-506.

163. Silva, C. H. P.; de, O. L. J. L.; Rezende, M. V. D. S. Intrinsic defect and deformation on local structure caused by rare-earth ions in the Na3V2(PO4)2F3 cathode material. Physica. Status. Solidi. (b). 2024, 261, 2300348.

164. Ghosh, S.; Barman, N.; Mazumder, M.; Pati, S. K.; Rousse, G.; Senguttuvan, P. High capacity and high-rate NASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures. Adv. Energy. Mater. 2020, 10, 1902918.

165. Li, T.; Yang, D.; Xu, G.; et al. A novel NASICON-typed Na3V1.96Cr0.03Mn0.01(PO4)2F3 cathode for high-performance Na-ion batteries. J. Energy. Storage. 2024, 104, 114596.

166. Cai, C.; Liu, Q.; Hu, Z.; et al. Construction of superior performance Na3V2-xCrx(PO4)2F3/C cathode by homovalent doping strategy toward enhanced sodium ion storage. J. Power. Sources. 2023, 571, 233080.

167. Yi, X.; Luo, H.; Zhou, Y.; et al. Effect of Cr3+ doping on the electrochemical performance of Na3V2(PO4)2F3/C cathode materials for sodium ion battery. Electrochimica. Acta. 2023, 437, 141491.

168. Gu, Z.; Heng, Y.; Guo, J.; et al. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano. Res. 2023, 16, 439-48.

169. Su, R.; Zhu, W.; Liang, K.; et al. Mnx+ substitution to improve Na3V2(PO4)2F3-based electrodes for sodium-ion battery cathode. Molecules 2023, 28, 1409.

170. Tong, S.; Pan, H.; Liu, H.; et al. Titanium doping induced the suppression of irreversible phase transformation at high voltage for V-based phosphate cathodes of Na-ion batteries. ChemSusChem 2023, 16, e202300244.

171. Nongkynrih, J.; Sengupta, A.; Modak, B.; Mitra, S.; Tyagi, A.; Dutta, D. P. Enhanced electrochemical properties of W-doped Na3V2(PO4)2F3@C as cathode material in sodium ion batteries. Electrochimica. Acta. 2022, 415, 140256.

172. Zhu, L.; Zhang, Q.; Sun, D.; et al. Engineering the crystal orientation of Na3V2(PO4)2F3@rGO microcuboids for advanced sodium-ion batteries. Mater. Chem. Front. 2020, 4, 2932-42.

173. Park, S.; Song, J.; Kim, S.; et al. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano. Res. 2019, 12, 911-7.

174. Liu, S.; Cao, X.; Zhang, Y.; et al. Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. J. Mater. Chem. A. 2020, 8, 18872-9.

175. Ponrouch, A.; Dedryvère, R.; Monti, D.; et al. Towards high energy density sodium ion batteries through electrolyte optimization. Energy. Environ. Sci. 2013, 6, 2361.

176. Sadan, M. K.; Kim, H.; Kim, C.; et al. Enhanced rate and cyclability of a porous Na3V2(PO4)3 cathode using dimethyl ether as the electrolyte for application in sodium-ion batteries. J. Mater. Chem. A. 2020, 8, 9843-9.

177. Hwang, J.; Matsumoto, K.; Hagiwara, R. Electrolytes toward high-voltage Na3V2(PO4)2F3 positive electrode durable against temperature variation. Adv. Energy. Mater. 2020, 10, 2001880.

178. Liu, F.; Zong, J.; Liang, Y.; et al. Ordered vacancies as sodium ion micropumps in Cu-deficient copper indium diselenide to enhance sodium storage. Adv. Mater. 2024, 36, e2403131.

179. Li, J.; Liang, Z.; Jin, Y.; et al. A high-voltage cathode material with ultralong cycle performance for sodium-ion batteries. Small. Methods. 2024, 8, e2301742.

180. Xie, K.; Ji, Y.; Yang, L.; Pan, F. Electrolyte design strategies to construct stable cathode-electrolyte interphases for high-voltage sodium-ion batteries. Adv. Energy. Mater. 2025, 15, 2405301.

181. Alptekin, H.; Au, H.; Olsson, E.; et al. Elucidation of the solid electrolyte interphase formation mechanism in micro-mesoporous hard-carbon anodes. Adv. Mater. Inter. 2022, 9, 2101267.

182. Zhang, J.; Li, J.; Jia, G.; Wang, H.; Wang, M. Improving Na3V2(PO4)2F3 half-cell performance with NaBF4-enhanced sodium difluoro(oxalato)borate electrolyte. J. Energy. Chem. 2025, 102, 340-52.

183. Liang, H.; Liu, H.; Guo, J.; et al. Self-purification and silicon-rich interphase achieves high-temperature (70 °C) sodium-ion batteries with nonflammable electrolyte. Energy. Storage. Mater. 2024, 66, 103230.

184. Liang, H. J.; Liu, H. H.; Zhao, X. X.; et al. Electrolyte chemistry toward ultrawide-temperature (-25 to 75 °C) sodium-ion batteries achieved by phosphorus/silicon-synergistic interphase manipulation. J. Am. Chem. Soc. 2024, 146, 7295-304.

185. Ren, H.; Zhang, X.; Liu, Q.; Tang, W.; Liang, J.; Wu, W. Fully-printed flexible aqueous rechargeable sodium-ion batteries. Small 2024, 20, e2312207.

186. Desai, P.; Forero-Saboya, J.; Meunier, V.; et al. Mastering the synergy between Na3V2(PO4)2F3 electrode and electrolyte: a must for Na-ion cells. Energy. Storage. Mater. 2023, 57, 102-17.

187. Zheng, Y.; Sun, M.; Yu, F.; et al. Utilizing weakly-solvated diglyme-based electrolyte to achieve a 10,000-cycles durable Na3V2(PO4)2F3 cathode endured at -20 °C. Nano. Energy. 2022, 102, 107693.

188. Wang, X.; Yang, C.; Yao, L.; Wang, Y.; Jiang, N.; Liu, Y. Anion/Cation solvation engineering for a ternary low-concentration electrolyte toward high-voltage and long-life sodium-ion batteries. Adv. Funct. Mater. 2024, 34, 2315007.

189. Jiang, M.; Li, T.; Qiu, Y.; et al. Electrolyte design with dual -C≡N groups containing additives to enable high-voltage Na3V2(PO4)2F3-based sodium-ion batteries. J. Am. Chem. Soc. 2024, 146, 12519-29.

190. Hwang, J.; Aoyagi, I.; Takiyama, M.; Matsumoto, K.; Hagiwara, R. Inhibition of aluminum corrosion with the addition of the tris(pentafluoroethyl)trifluorophosphate anion to a sulfonylamide-based ionic liquid for sodium-ion batteries. J. Electrochem. Soc. 2022, 169, 080522.

191. Yan, Y.; Xu, J.; Cao, J.; et al. Fluorinated ionic liquid mediated nanostructure with enhanced conductivity and fluorine retention in Na3V2(PO4)2F3 cathode toward high-performance sodium-ion batteries. Chem. Eng. J. 2024, 498, 155640.

192. Li, Z.; Qiu, L.; Li, P.; et al. Exposing the (002) active facet by reducing surface energy for a high-performance Na3V2(PO4)2F3 cathode. J. Mater. Chem. A. 2024, 12, 7777-87.

193. Zhang, S.; Wang, J.; Chen, K.; et al. Aromatic ketones as mild presodiating reagents toward cathodes for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. Engl. 2024, 63, e202317439.

194. Yun, D. H.; Song, J.; Kim, J.; et al. A binder-driven cathode-electrolyte interphase via a displacement reaction for high voltage Na3V2(PO4)2F3 cathodes in sodium-ion batteries. J. Mater. Chem. A. 2023, 11, 5540-7.

195. Zhang, Z.; Zhang, R.; Rajagopalan, R.; et al. A high-capacity self-sacrificial additive based on electroactive sodiated carbonyl groups for sodium-ion batteries. Chem. Commun. (Camb). 2022, 58, 8702-5.

196. Forero-saboya, J.; Desai, P.; Healy, C. R.; et al. Influence of formation temperature on cycling stability of sodium-ion cells: a case study of Na3V2(PO4)2F3|HC Cells. J. Electrochem. Soc. 2023, 170, 100529.

197. Komayko, A. I.; Shraer, S. D.; Fedotov, S. S.; Nikitina, V. A. Advantages of a solid solution over biphasic intercalation for vanadium-based polyanion cathodes in Na-ion batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 43767-77.

198. Goloviznina, K.; Bendadesse, E.; Sel, O.; Tarascon, J. M.; Salanne, M. Disclosing the interfacial electrolyte structure of Na-insertion electrode materials: origins of the desolvation phenomenon. ACS. Appl. Mater. Interfaces. 2023, 15, 59380-8.

199. Semykina, D. O.; Sharafutdinov, M. R.; Kosova, N. V. Understanding of the mechanism and kinetics of the fast solid-state reaction between NaF and VPO4 to form Na3V2(PO4)2F3. Inorg. Chem. 2022, 61, 10023-35.

200. Deng, L.; Yu, F. D.; Sun, G.; et al. Constructing stable anion-tuned electrode/electrolyte interphase on high-voltage Na3V2(PO4)2F3 cathode for thermally-modulated fast-charging batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202213416.

201. Zhang, Y.; Xun, J.; Zhang, K.; Zhang, B.; Xu, H. 2D-lamellar stacked Na3V2(PO4)2F3@RuO2 as a high-voltage, high-rate capability and long-term cycling cathode material for sodium ion batteries. J. Mater. Chem. A. 2022, 10, 11163-71.

202. S., Biswas, K. Boosting sodium-ion battery performance with vanadium substituted Fe, Ni dual doped fluorophosphate cathode over a wide temperature range. J. Power. Sources. 2025, 626, 235734.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/